Skip to content

Dynamically generate Apache Airflow DAGs from YAML configuration files

License

Notifications You must be signed in to change notification settings

datacoves/dag-factory

 
 

Repository files navigation

dag-factory

Github Actions Coverage PyPi Code Style Downloads

dag-factory is a library for dynamically generating Apache Airflow DAGs from YAML configuration files.

Installation

To install dag-factory run pip install dag-factory. It requires Python 3.6.0+ and Apache Airflow 1.10+.

Usage

After installing dag-factory in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:

example_dag1:
  default_args:
    owner: "example_owner"
    start_date: 2018-01-01 # or '2 days'
    end_date: 2018-01-05
    retries: 1
    retry_delay_sec: 300
  schedule_interval: "0 3 * * *"
  concurrency: 1
  max_active_runs: 1
  dagrun_timeout_sec: 60
  default_view: "tree" # or 'graph', 'duration', 'gantt', 'landing_times'
  orientation: "LR" # or 'TB', 'RL', 'BT'
  description: "this is an example dag!"
  on_success_callback_name: print_hello
  on_success_callback_file: /usr/local/airflow/dags/print_hello.py
  on_failure_callback_name: print_hello
  on_failure_callback_file: /usr/local/airflow/dags/print_hello.py
  tasks:
    task_1:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: "echo 1"
    task_2:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: "echo 2"
      dependencies: [task_1]
    task_3:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: "echo 3"
      dependencies: [task_1]

Then in the DAGs folder in your Airflow environment you need to create a python file like this:

from airflow import DAG
import dagfactory

dag_factory = dagfactory.DagFactory("/path/to/dags/config_file.yml")

dag_factory.clean_dags(globals())
dag_factory.generate_dags(globals())

And this DAG will be generated and ready to run in Airflow!

screenshot

Benefits

  • Construct DAGs without knowing Python
  • Construct DAGs without learning Airflow primitives
  • Avoid duplicative code
  • Everyone loves YAML! ;)

Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue.

Run docker image in dev mode

docker build -t dag-factory .

docker run -d -p "8080:8080" -v "$(pwd):/app" -v "$(pwd)/examples/dags:/root/airflow/dags" -v "$(pwd)/examples/plugins:/root/airflow/plugins" dag-factory

--network="airbyte_airbyte_internal"

Navigate to https://localhost:8080 and login using credentials admin/admin.

About

Dynamically generate Apache Airflow DAGs from YAML configuration files

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.6%
  • Makefile 1.8%
  • Dockerfile 1.2%
  • Shell 0.4%