Skip to content

davidezanella/NLP-concept-tagging

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LUS midterm project

Midterm project for the Language Understanding System course 2019/2020 @ UniTN.

Concept tagging for the movie domain. The models were trained and performed using the following dataset: NL2SparQL4NLU.

Results - SCLM

Baseline Remove of OoS Use of POS tags Normalization F1-score Accuracy Precision Recall
Output symbol priors 0.0036 0.0255 0.0036 0.0036
Random path 0.0268 0.4982 0.0218 0.0348
None 0.7269 0.9165 0.7600 0.6966
MLE 0.7223 0.9127 0.7197 0.7250
MLE ☑️ 0.7466 0.9055 0.6883 0.8157
MLE ☑️ ☑️ 0.8119 0.9421 0.8046 0.8194
MLE ☑️ ☑️ ☑️ 0.8021 0.9380 0.7960 0.8084

Results - HMM

Estimator Remove of OoS Use of POS tags Normalization F1-score Accuracy Precision Recall
Laplace 0.6326 0.8871 0.7237 0.5618
ELE 0.6948 0.9050 0.7406 0.6544
Lindstone 0.05 0.7078 0.9074 0.7062 0.7094
Lindstone 0.15 0.7093 0.9099 0.7129 0.7057
Witten Bell 0.7159 0.9124 0.7512 0.6837
MLE 0.7173 0.9086 0.7719 0.6700
Lindstone 0.1 0.7213 0.9130 0.7213 0.7213
Witten Bell + Witten Bell ☑️ 0.7862 0.9326 0.7821 0.7873
Witten Bell + Witten Bell + Witten Bell ☑️ ☑️ 0.7576 0.9277 0.7618 0.7534
Witten Bell + Witten Bell + Witten Bell + Witten Bell ☑️ ☑️ ☑️ 0.7311 0.9178 0.7318 0.7305

About

Concept tagging for the movie domain.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages