-
Notifications
You must be signed in to change notification settings - Fork 4
A python implementation of Leighton-Micali hierarchical hash based signatures
License
davidmcgrew/hash-sigs
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
README for the hash-sigs package: an implementation of the Leighton-Micali Hierarchical Signature System (HSS). Introduction This package contains an experimental implementation of the hash-based digital signatures algorithm specified in the Internet Draft draft-mcgrew-hash-sigs-05.txt, intended for the purposes of understanding that specification and gaining practical experience working with hash based signatures. It is NOT intended for use in security critical applications. The implementation aims for readability over other criteria such as performance or fully exploiting the Python language. Please see the security considerations section of the draft, and note that private key files MUST NOT be copied and MUST NOT be cloned as part of a Virtual Machine snapshot (either a full snapshot or a volume snapshot), or else security may be lost. The application checks to see if private key files have been accidentially copied, but these checks cannot detect VM cloning. Contents hss.py - a Python 2.7.3 implementation of the HSS scheme test/ - a subdirectory with a test script and test files LICENSE - stuff for lawyers AUTHORS - contributors README - this file Requirements - a Python interpreter version 2.7.3 or greater - the pycrypto package (https://pypi.python.org/pypi/pycrypto) Usage The hss.py program can generate public/private keypairs, sign files, and verify signatures on files, as well as perform automated testing and read and pretty-print keys and signatures. It uses detached signatures, that is, the signature of a file with the path <name> is written to a separate file with the path <name>.sig. Public and private keys are stored in files named <keyname>.pub and <keyname>.prv, respectively, where <keyname> is a string provided to the key generation process. The suffixes .sig, .pub, and .prv MUST be present in order for hss.py to correctly process the files. This convention ensures that the file formats exactly match the draft specification, for clarity's sake. hss.py expects that its first argument will be one of these commands: - genkey, to generate one or more public private keypairs, - sign, to sign one or more files, - verify, to verify one or more files, - read, to read and pretty-print one or more files, - test, to perform automated algorithmic consistency checks. The syntax of these commands is shown by the usage statement: hss.py genkey <name> creates <name>.prv and <name>.pub hss.py sign <file> [ <file2> ... ] <prvname> updates <prvname>, then writes signature of <file> to <file>.sig hss.py verify <pubname> <file> [ <file2> ... ] verifies file using public key hss.py read <file> [ <file2> ... ] read and pretty-print .sig, .pub, .prv file(s) hss.py test [all | hss | lms | lmots | checksum ] performs algorithm tests As hss.py is an executable file, it has the path to its python interpreter hardcoded as /usr/bin/python. To run the program when the python interpreter is in another location on the filesystem, use the command 'python hss.py' instead of 'hss.py', followed by the arguments as above, or edit the path as needed. Testing The hss.py test command performs several automated tests, including consistency checking (signing then verifying) with valid signatures, sanity checks on invalid signatures, checks that verify that private keys cannot be overused, and fuzz-testing style checks that mangle signatures and private keys. These checks are performed on all of the signature components in the HSS draft: LMOTS, LMS, and HSS. To test the command-line functionality of hss.py, the bash script hss-test.sh in the test/ subdirectory generates a keypair, signs a set of files, verifies the signatures, and then generates a set of 'dump' files containing the pretty-printed format. Public key and signature formats With the read command, hss.py will print out a signature or public key file in a human-readable format. This can be useful as a way to understand how the different data elements are serialized into byte strings. An example of the output of the read command is: -------------------------------------------- HSS public key levels-1 00000001 -------------------------------------------- LMS public key LMS type 00000001 # LMS_SHA256_M32_H5 LMOTS_type 00000004 # LMOTS_SHA256_N32_W8 I 968ae04d83fc24cb75a96a474dab0590 13ba92228a856eb715861f5cfb9782bc 16d2512cdeb85bf080a9fae16b56cbfc 710bf44b69fef6bec99a35eaec062c27 K be9d1745e370334297aaf05fcefa2c84 9fe41c59b3321f883f54c9620a11d959 -------------------------------------------- -------------------------------------------- The middle column contains a hexadecimal string that corresponds to the byte string of the object, when read from left to right and top to bottom. That is, if hexdump -C is run on the same file, it would reveal that the object is the hex string 000000010000000100000004968ae04d83fc24cb75a96a474dab0590 ... The left-hand column contains the names of the variables that correspond to the byte strings in the middle column. The rightmost column contains the symbolic identifier associated with the typecodes. Each object starts with a descriptive name, e.g. "HSS public key", "LMS public key", and each object is surrounded by dashed lines. These lines illustrate how one object can contain another, such as how the LMS public key is contained in the HSS public key in the example above.
About
A python implementation of Leighton-Micali hierarchical hash based signatures
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published