Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions Assignment 2/2020BTEIT00029/Huffman.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import re
import numpy as np
from PIL import Image
print("Huffman Compression Program")

file = "compressed.png"
my_string = np.asarray(Image.open(file), np.uint8)
shape = my_string.shape
a = my_string

my_string = str(my_string.tolist())


letters = []
only_letters = []
for letter in my_string:
if letter not in letters:
frequency = my_string.count(letter)
letters.append(frequency)
letters.append(letter)
only_letters.append(letter)

nodes = []
while len(letters) > 0:
nodes.append(letters[0:2])
letters = letters[2:]
nodes.sort()
huffman_tree = []
huffman_tree.append(nodes)


def combine_nodes(nodes):
pos = 0
newnode = []
if len(nodes) > 1:
nodes.sort()
nodes[pos].append("1")
nodes[pos+1].append("0")
combined_node1 = (nodes[pos][0] + nodes[pos+1][0])
combined_node2 = (nodes[pos][1] + nodes[pos+1][1])
newnode.append(combined_node1)
newnode.append(combined_node2)
newnodes = []
newnodes.append(newnode)
newnodes = newnodes + nodes[2:]
nodes = newnodes
huffman_tree.append(nodes)
combine_nodes(nodes)
return huffman_tree


newnodes = combine_nodes(nodes)

huffman_tree.sort(reverse=True)
print("Huffman tree with merged pathways:")

checklist = []
for level in huffman_tree:
for node in level:
if node not in checklist:
checklist.append(node)
else:
level.remove(node)
count = 0
for level in huffman_tree:
print("Level", count, ":", level)
count += 1
print()

letter_binary = []
if len(only_letters) == 1:
lettercode = [only_letters[0], "0"]
letter_binary.append(letter_code*len(my_string))
else:
for letter in only_letters:
code = ""
for node in checklist:
if len(node) > 2 and letter in node[1]:
code = code + node[2]
lettercode = [letter, code]
letter_binary.append(lettercode)
print(letter_binary)
print("Binary code generated:")
for letter in letter_binary:
print(letter[0], letter[1])

bitstring = ""
for character in my_string:
for item in letter_binary:
if character in item:
bitstring = bitstring + item[1]
binary = "0b"+bitstring
print("Your message as binary is:")


uncompressed_file_size = len(my_string)*7
compressed_file_size = len(binary)-2
print("Your original file size was", uncompressed_file_size,
"bits. The compressed size is:", compressed_file_size)
print("This is a saving of ", uncompressed_file_size-compressed_file_size, "bits")
output = open("compressed.txt", "w+")
print("Compressed file generated as compressed.txt")
output = open("compressed.txt", "w+")
print("Decoding.......")
output.write(bitstring)

bitstring = str(binary[2:])
uncompressed_string = ""
code = ""
for digit in bitstring:
code = code+digit
pos = 0
for letter in letter_binary:
if code == letter[1]:
uncompressed_string = uncompressed_string+letter_binary[pos][0]
code = ""
pos += 1

temp = re.findall(r'\d+', uncompressed_string)
res = list(map(int, temp))
res = np.array(res)
res = res.astype(np.uint8)
res = np.reshape(res, shape)
print(res)
print("Observe the shapes and input and output arrays are matching or not")
print("Input image dimensions:", shape)
print("Output image dimensions:", res.shape)
data = Image.fromarray(res)
data.save('original.png')
if a.all() == res.all():
print("Success")
20 changes: 20 additions & 0 deletions Assignment 2/2020BTEIT00029/Observation.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
1) Original.jpg :
Dimensions: 128x128 px
Size: 171.7 kB
2) Compressed.png :
Dimensions: 100x100 px
Size: 114.2 kB

Performance:
By calculating the Compression Ratio of the image:

compression ratio = (uncompressed image size / compressed image size)
=171.7/114.2
=1.50


Huffman Encoding Time Complexity:

The time complexity for encoding each unique character based on its frequency is O(nlog n).
Extracting minimum frequency from the priority queue takes place 2*(n-1) times and its complexity is O(log n). Thus the overall complexity is O(nlog n).

42 changes: 42 additions & 0 deletions Assignment 2/2020BTEIT00029/Vector_Quantization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
#for working and manipulating arrays
import numpy as np
import scipy as sp
# For plotting and Visualization
import matplotlib.pyplot as plt

from sklearn import cluster

from PIL import Image

im = Image.open("myImage.jpg")
im = np.array(im)


n_clusters = 5
np.random.seed(0)

X = im.reshape((-1, 1))
k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4)
k_means.fit(X)
values = k_means.cluster_centers_.squeeze()
labels = k_means.labels_

# create an array from labels and values
im_compressed = np.choose(labels, values)
im_compressed.shape = im.shape

vmin = im.min()
vmax = im.max()

# original image
plt.figure(1, figsize=(3, 2.2))
plt.imshow(im.astype('uint8'), cmap=plt.cm.gray, vmin=vmin, vmax=256, )

# compressed image
plt.figure(2, figsize=(3, 2.2))
plt.imshow(im_compressed.astype('uint8'),
cmap=plt.cm.gray, vmin=vmin, vmax=vmax, )
Image.fromarray((im_compressed).astype("uint8")).save("compressed.png")


plt.show()
Binary file added Assignment 2/2020BTEIT00029/mouse-min.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Assignment 2/2020BTEIT00029/mouse.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.