Skip to content

Latest commit

 

History

History
524 lines (397 loc) · 23.5 KB

advanced-pinot-setup.md

File metadata and controls

524 lines (397 loc) · 23.5 KB

Advanced Pinot Setup

Start Pinot components (scripts or docker images)

Set up Pinot by starting each component individually

{% tabs %} {% tab title="Using docker images" %} Start Pinot Components using docker

Prerequisites

{% hint style="info" %} If running locally, ensure your docker cluster has enough resources, below is a sample config. {% endhint %}

Sample Docker resources

Pull Docker image

You can try out pre-built Pinot all-in-one Docker image.

export PINOT_VERSION=0.10.0
export PINOT_IMAGE=apachepinot/pinot:${PINOT_VERSION}
docker pull ${PINOT_IMAGE}

(Optional) You can also follow the instructions here to build your own images.

0. Create a network

Create an isolated bridge network in Docker.

docker network create -d bridge pinot-demo

1. Start Zookeeper

Start Zookeeper in daemon.

docker run \
    --network=pinot-demo \
    --name  pinot-zookeeper \
    --restart always \
    -p 2181:2181 \
    -d zookeeper:3.5.6

Start ZKUI to browse Zookeeper data at http://localhost:9090.

docker run \
    --network pinot-demo --name=zkui \
    -p 9090:9090 \
    -e ZK_SERVER=pinot-zookeeper:2181 \
    -d qnib/plain-zkui:latest

2. Start Pinot Controller

Start Pinot Controller in daemon and connect to Zookeeper.

docker run \
    --network=pinot-demo \
    --name pinot-controller \
    -p 9000:9000 \
    -d ${PINOT_IMAGE} StartController \
    -zkAddress pinot-zookeeper:2181

3. Start Pinot Broker

Start Pinot Broker in daemon and connect to Zookeeper.

docker run \
    --network=pinot-demo \
    --name pinot-broker \
    -d ${PINOT_IMAGE} StartBroker \
    -zkAddress pinot-zookeeper:2181

4. Start Pinot Server

Start Pinot Server in daemon and connect to Zookeeper.

export PINOT_IMAGE=apachepinot/pinot:0.3.0-SNAPSHOT
docker run \
    --network=pinot-demo \
    --name pinot-server \
    -d ${PINOT_IMAGE} StartServer \
    -zkAddress pinot-zookeeper:2181

Now all Pinot related components are started as an empty cluster.

You can run below command to check container status.

docker container ls -a

Sample Console Output

CONTAINER ID        IMAGE                              COMMAND                  CREATED              STATUS                PORTS                                                  NAMES
9e80c3fcd29b        apachepinot/pinot:0.3.0-SNAPSHOT   "./bin/pinot-admin.s…"   18 seconds ago       Up 17 seconds         8096-8099/tcp, 9000/tcp                                pinot-server
f4c42a5865c7        apachepinot/pinot:0.3.0-SNAPSHOT   "./bin/pinot-admin.s…"   21 seconds ago       Up 21 seconds         8096-8099/tcp, 9000/tcp                                pinot-broker
a413b0013806        apachepinot/pinot:0.3.0-SNAPSHOT   "./bin/pinot-admin.s…"   26 seconds ago       Up 25 seconds         8096-8099/tcp, 0.0.0.0:9000->9000/tcp                  pinot-controller
9d3b9c4d454b        zookeeper:3.5.6                    "/docker-entrypoint.…"   About a minute ago   Up About a minute     2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   pinot-zookeeper

{% endtab %}

{% tab title="Using launcher scripts" %} Download Pinot Distribution from http://pinot.apache.org/download/

$ export PINOT_VERSION=0.10.0
$ tar -xvf apache-pinot-${PINOT_VERSION}-bin.tar.gz

$ cd apache-pinot-${PINOT_VERSION}-bin
$ ls
DISCLAIMER    LICENSE        NOTICE        bin        conf        lib        licenses    query_console    sample_data

$ PINOT_INSTALL_DIR=`pwd`

Start Pinot components via launcher scripts

Start Zookeeper

cd apache-pinot-${PINOT_VERSION}-bin
bin/pinot-admin.sh StartZookeeper

Start Pinot Controller

See controller page for more details .

bin/pinot-admin.sh StartController \
    -zkAddress localhost:2181

Start Pinot Broker

bin/pinot-admin.sh StartBroker \
    -zkAddress localhost:2181

Start Pinot Server

bin/pinot-admin.sh StartServer \
    -zkAddress localhost:2181

{% endtab %} {% endtabs %}

Start Pinot Using Config Files

Often times we need to customized the setup of Pinot components. Hence user can compile a config file and use it to start Pinot components.

Below are the examples config files and sample command to start Pinot.

Pinot Controller

Below is a sample pinot-controller.conf used in HelmChart setup.

controller.helix.cluster.name=pinot-quickstart
controller.port=9000
controller.vip.host=pinot-controller
controller.vip.port=9000
controller.data.dir=/var/pinot/controller/data
controller.zk.str=pinot-zookeeper:2181
pinot.set.instance.id.to.hostname=true

In order to run Pinot Controller, the command is:

bin/pinot-admin.sh StartController -configFileName config/pinot-controller.conf

Configure Controller

Below are some configurations you can set in Pinot Controller. You can head over to Controller for complete list of available configs.

Config Name Description Default Value
controller.helix.cluster.name Pinot Cluster name PinotCluster
controller.host Pinot Controller Host Required if config pinot.set.instance.id.to.hostname is false.
pinot.set.instance.id.to.hostname When enabled, use server hostname to infer controller.host false
controller.port Pinot Controller Port 9000
controller.vip.host The VIP hostname used to set the download URL for segments ${controller.host}
controller.vip.port The VIP port used to set the download URL for segments ${controller.port}
controller.data.dir Directory to host segment data ${java.io.tmpdir}/PinotController
controller.zk.str Zookeeper URL localhost:2181
cluster.tenant.isolation.enable Enable Tenant Isolation, default is single tenant cluster true

Pinot Broker

Below is a sample pinot-broker.conf used in HelmChart setup.

pinot.broker.client.queryPort=8099
pinot.broker.routing.table.builder.class=random
pinot.set.instance.id.to.hostname=true

In order to run Pinot Broker, the command is:

bin/pinot-admin.sh StartBroker -clusterName pinot-quickstart -zkAddress pinot-zookeeper:2181 -configFileName config/pinot-broker.conf

Configure Broker

Below are some configurations you can set in Pinot Broker. You can head over to Broker for complete list of available configs.

Config Name Description Default Value
instanceId Unique id to register Pinot Broker in the cluster. BROKER_${BROKER_HOST}_${pinot.broker.client.queryPort}
pinot.set.instance.id.to.hostname When enabled, use server hostname to set ${BROKER_HOST} in above config, else use IP address. false
pinot.broker.client.queryPort Port to query Pinot Broker 8099
pinot.broker.timeoutMs Timeout for Broker Query in Milliseconds 10000
pinot.broker.enable.query.limit.override Configuration to enable Query LIMIT Override to protect Pinot Broker and Server from fetch too many records back. false
pinot.broker.query.response.limit When config pinot.broker.enable.query.limit.override is enabled, reset limit for selection query if it exceeds this value. 2147483647
pinot.broker.startup.minResourcePercent Configuration to consider the broker ServiceStatus as being STARTED if the percent of resources (tables) that are ONLINE for this this broker has crossed the threshold percentage of the total number of tables that it is expected to serve 100.0

Pinot Server

Below is a sample pinot-server.conf used in HelmChart setup.

pinot.server.netty.port=8098
pinot.server.adminapi.port=8097
pinot.server.instance.dataDir=/var/pinot/server/data/index
pinot.server.instance.segmentTarDir=/var/pinot/server/data/segment
pinot.set.instance.id.to.hostname=true

In order to run Pinot Server, the command is:

bin/pinot-admin.sh StartServer -clusterName pinot-quickstart -zkAddress pinot-zookeeper:2181 -configFileName config/pinot-server.conf

Configure Server

Below are some outstanding configurations you can set in Pinot Server. You can head over to Server for complete list of available configs.

Config Name Description Default Value
instanceId Unique id to register Pinot Server in the cluster. Server_${SERVER_HOST}_${pinot.server.netty.port}
pinot.set.instance.id.to.hostname When enabled, use server hostname to set ${SERVER_HOST} in above config, else use IP address. false
pinot.server.netty.port Port to query Pinot Server 8098
pinot.server.adminapi.port Port for Pinot Server Admin UI 8097
pinot.server.instance.dataDir Directory to hold all the data ${java.io.tmpDir}/PinotServer/index
pinot.server.instance.segmentTarDir Directory to hold temporary segments downloaded from Controller or Deep Store ${java.io.tmpDir}/PinotServer/segmentTar
pinot.server.query.executor.timeout Timeout for Server to process Query in Milliseconds 15000

Create and Configure table

A TABLE in regular database world is represented as <TABLE>_OFFLINE and/or <TABLE>_REALTIME in Pinot depending on the ingestion mode (batch, real-time, hybrid)

See examples for all possible batch/streaming tables.

Batch Table Creation

See Batch Tables for table configuration details and how to customize it.

{% tabs %} {% tab title="Docker" %}

docker run \
    --network=pinot-demo \
    --name pinot-batch-table-creation \
    ${PINOT_IMAGE} AddTable \
    -schemaFile examples/batch/airlineStats/airlineStats_schema.json \
    -tableConfigFile examples/batch/airlineStats/airlineStats_offline_table_config.json \
    -controllerHost pinot-controller \
    -controllerPort 9000 \
    -exec

Sample Console Output

Executing command: AddTable -tableConfigFile examples/batch/airlineStats/airlineStats_offline_table_config.json -schemaFile examples/batch/airlineStats/airlineStats_schema.json -controllerHost pinot-controller -controllerPort 9000 -exec
Sending request: http://pinot-controller:9000/schemas to controller: a413b0013806, version: Unknown
{"status":"Table airlineStats_OFFLINE succesfully added"}

{% endtab %}

{% tab title="Using launcher scripts" %}

bin/pinot-admin.sh AddTable \
    -schemaFile examples/batch/airlineStats/airlineStats_schema.json \
    -tableConfigFile examples/batch/airlineStats/airlineStats_offline_table_config.json \
    -exec

{% endtab %} {% endtabs %}

Automatically add an inverted index to your batch table

By default, the inverted index type is the only type of index that isn't created automatically during segment generation. Instead, they are generated when the segments are loaded on the server. But, waiting to build indexes until load time increases the startup time and takes up resources with every new segment push, which increases the time for other operations such as rebalance.

To automatically create an inverted index during segment generation, add an entry to your table index config in the table configuration file.

This setting works with batch (offline) tables.

When set to true, Pinot creates an inverted index for the columns that you specify in the invertedIndexColumns list in the table configuration.

This setting is false by default.

Set createInvertedIndexDuringSegmentGeneration to true in your table config, as follows:

...
"tableIndexConfig": {
    ...
    "createInvertedIndexDuringSegmentGeneration": true,
    ...
}
...

When you update this setting in your table configuration, you must reload the table segment to apply the inverted index to all existing segments.

Streaming Table Creation

See Streaming Tables for table configuration details and how to customize it.

{% tabs %} {% tab title="Docker" %} Start Kafka

docker run \
    --network pinot-demo --name=kafka \
    -e KAFKA_ZOOKEEPER_CONNECT=pinot-zookeeper:2181/kafka \
    -e KAFKA_BROKER_ID=0 \
    -e KAFKA_ADVERTISED_HOST_NAME=kafka \
    -d wurstmeister/kafka:latest

Create a Kafka Topic

docker exec \
  -t kafka \
  /opt/kafka/bin/kafka-topics.sh \
  --zookeeper pinot-zookeeper:2181/kafka \
  --partitions=1 --replication-factor=1 \
  --create --topic flights-realtime

Create a Streaming table

docker run \
    --network=pinot-demo \
    --name pinot-streaming-table-creation \
    ${PINOT_IMAGE} AddTable \
    -schemaFile examples/stream/airlineStats/airlineStats_schema.json \
    -tableConfigFile examples/docker/table-configs/airlineStats_realtime_table_config.json \
    -controllerHost pinot-controller \
    -controllerPort 9000 \
    -exec

Sample output

Executing command: AddTable -tableConfigFile examples/docker/table-configs/airlineStats_realtime_table_config.json -schemaFile examples/stream/airlineStats/airlineStats_schema.json -controllerHost pinot-controller -controllerPort 9000 -exec
Sending request: http://pinot-controller:9000/schemas to controller: 8fbe601012f3, version: Unknown
{"status":"Table airlineStats_REALTIME succesfully added"}

{% endtab %}

{% tab title="Using launcher scripts" %} Start Kafka-Zookeeper

bin/pinot-admin.sh StartZookeeper -zkPort 2191

Start Kafka

bin/pinot-admin.sh  StartKafka -zkAddress=localhost:2191/kafka -port 19092

Create stream table

bin/pinot-admin.sh AddTable \
    -schemaFile examples/stream/airlineStats/airlineStats_schema.json \
    -tableConfigFile examples/stream/airlineStats/airlineStats_realtime_table_config.json \
    -exec

{% endtab %} {% endtabs %}

Use sortedColumn with streaming tables

For streaming tables, you can use a sorted index with sortedColumn to sort data when generating segments as the segment is created. See Real-time tables for more information.

A sorted forward index can be used as an inverted index with better performance, but with the limitation that the search is only applied to one column per table. See Sorted inverted index to learn more.

Load Data

Now that the table is configured, let's load some data. Data can be loaded in batch mode or streaming mode. See ingestion overview page for details. Loading data involves generating pinot segments from raw data and pushing them to the pinot cluster.

Load Data in Batch

User can always generate and push segments to Pinot via standalone scripts or using frameworks such as Hadoop or Spark. See this page for more details on setting up Data Ingestion Jobs.

Below example goes with the standalone mode.

{% tabs %} {% tab title="Docker" %}

docker run \
    --network=pinot-demo \
    --name pinot-data-ingestion-job \
    ${PINOT_IMAGE} LaunchDataIngestionJob \
    -jobSpecFile examples/docker/ingestion-job-specs/airlineStats.yaml

Sample Console Output

SegmentGenerationJobSpec:
!!org.apache.pinot.spi.ingestion.batch.spec.SegmentGenerationJobSpec
excludeFileNamePattern: null
executionFrameworkSpec: {extraConfigs: null, name: standalone, segmentGenerationJobRunnerClassName: org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner,
  segmentTarPushJobRunnerClassName: org.apache.pinot.plugin.ingestion.batch.standalone.SegmentTarPushJobRunner,
  segmentUriPushJobRunnerClassName: org.apache.pinot.plugin.ingestion.batch.standalone.SegmentUriPushJobRunner}
includeFileNamePattern: glob:**/*.avro
inputDirURI: examples/batch/airlineStats/rawdata
jobType: SegmentCreationAndTarPush
outputDirURI: examples/batch/airlineStats/segments
overwriteOutput: true
pinotClusterSpecs:
- {controllerURI: 'http://pinot-controller:9000'}
pinotFSSpecs:
- {className: org.apache.pinot.spi.filesystem.LocalPinotFS, configs: null, scheme: file}
pushJobSpec: {pushAttempts: 2, pushParallelism: 1, pushRetryIntervalMillis: 1000,
  segmentUriPrefix: null, segmentUriSuffix: null}
recordReaderSpec: {className: org.apache.pinot.plugin.inputformat.avro.AvroRecordReader,
  configClassName: null, configs: null, dataFormat: avro}
segmentNameGeneratorSpec: null
tableSpec: {schemaURI: 'http://pinot-controller:9000/tables/airlineStats/schema',
  tableConfigURI: 'http://pinot-controller:9000/tables/airlineStats', tableName: airlineStats}

Trying to create instance for class org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner
Initializing PinotFS for scheme file, classname org.apache.pinot.spi.filesystem.LocalPinotFS
Finished building StatsCollector!
Collected stats for 403 documents
Created dictionary for INT column: FlightNum with cardinality: 386, range: 14 to 7389
Using fixed bytes value dictionary for column: Origin, size: 294
Created dictionary for STRING column: Origin with cardinality: 98, max length in bytes: 3, range: ABQ to VPS
Created dictionary for INT column: Quarter with cardinality: 1, range: 1 to 1
Created dictionary for INT column: LateAircraftDelay with cardinality: 50, range: -2147483648 to 303
......
......
Pushing segment: airlineStats_OFFLINE_16085_16085_29 to location: http://pinot-controller:9000 for table airlineStats
Sending request: http://pinot-controller:9000/v2/segments?tableName=airlineStats to controller: a413b0013806, version: Unknown
Response for pushing table airlineStats segment airlineStats_OFFLINE_16085_16085_29 to location http://pinot-controller:9000 - 200: {"status":"Successfully uploaded segment: airlineStats_OFFLINE_16085_16085_29 of table: airlineStats"}
Pushing segment: airlineStats_OFFLINE_16084_16084_30 to location: http://pinot-controller:9000 for table airlineStats
Sending request: http://pinot-controller:9000/v2/segments?tableName=airlineStats to controller: a413b0013806, version: Unknown
Response for pushing table airlineStats segment airlineStats_OFFLINE_16084_16084_30 to location http://pinot-controller:9000 - 200: {"status":"Successfully uploaded segment: airlineStats_OFFLINE_16084_16084_30 of table: airlineStats"}

{% endtab %}

{% tab title="Using launcher scripts" %}

bin/pinot-admin.sh LaunchDataIngestionJob \
    -jobSpecFile examples/batch/airlineStats/ingestionJobSpec.yaml

{% endtab %} {% endtabs %}

JobSpec yaml file has all the information regarding data format, input data location and pinot cluster coordinates. Note that this assumes that the controller is RUNNING to fetch the table config and schema. If not, you will have to configure the spec to point at their location. See Pinot Ingestion Job for more details.

Load Data in Streaming

Kafka

{% tabs %} {% tab title="Docker" %} Run below command to stream JSON data into Kafka topic: flights-realtime

docker run \
  --network pinot-demo \
  --name=loading-airlineStats-data-to-kafka \
  ${PINOT_IMAGE} StreamAvroIntoKafka \
  -avroFile examples/stream/airlineStats/sample_data/airlineStats_data.avro \
  -kafkaTopic flights-realtime -kafkaBrokerList kafka:9092 -zkAddress pinot-zookeeper:2181/kafka

{% endtab %}

{% tab title="Using launcher scripts" %} Run below command to stream JSON data into Kafka topic: flights-realtime

bin/pinot-admin.sh StreamAvroIntoKafka \
  -avroFile examples/stream/airlineStats/sample_data/airlineStats_data.avro \
  -kafkaTopic flights-realtime -kafkaBrokerList localhost:19092 -zkAddress localhost:2191/kafka

{% endtab %} {% endtabs %}