- Pytorch=0.4
- Visdom
- Opencv
- matplotlib
- pydensecrf
To directly create the conda virtual environemt please use the requirements.yml
- Download the dataset in a folder "dataset" and arrange the data in the following structure: Combine the training and validation dataset. (annotations and the images are to be put in separate folders)
├── dataset
│ ├── images
│ │ ├── train
│ │ ├── val
│ │ ├── test
│ ├── annotation
│ │ ├── train
│ │ ├── val
- Start the visdom server by the command
python -m visdom.server
- Execute the command
bash run.sh
[https://drive.google.com/file/d/1yxCbStft75gTOriWQLGtqS_5l_OAvYnR/view?usp=sharing]
- For single scale testing:
python test.py
- For multi-scale testing:
python multiscale_testing.py
- For single scale testing with CRF post processing:
python test_with_postprocessing.py
Left side : predicted classes : Right side : Ground Truth
One hundred layer Tiramisu [https://github.com/bfortuner/pytorch_tiramisu]