Train, predict, evaluate and interpret deep learning models to classify any genomic region that peaked (had significantly higher mapped reads compared to other regions) in any sequencing based functional dataset such as ChIP-seq, ATAC-seq, STARR-seq.
$ git clone https://github.com/deeprob/biopeaker.git
$ conda_env_path="/path/to/dlenv"
$ conda create --prefix $conda_env_path -c conda-forge -c anaconda -c bioconda python=3.7 homer
$ conda activate $conda_env_path
$ pip3 install -r requirements.txt
$ peak_bed_file="/path/to/peaks.bed"
$ nonpeak_bed_file="/path/to/notpeaks.bed"
$ dataset_path="/path/to/dataset.csv"
$ create_dataset_path="/path/to/create_dataset.py"
$ python $create_dataset_path $peak_bed_file $nonpeak_bed_file $dataset_path
$ peaker_path="/path/to/peaker.py"
$ dataset_path="/path/to/dataset.csv"
$ genome_fasta="/path/to/genome_fasta.fa"
$ save_dir="/path/to/save_dir/"
$ python $peaker_path resnet $dataset_path ohe $genome_fasta $save_dir
$ peaker_path="/path/to/peaker.py"
$ dataset_path="/path/to/dataset.csv"
$ genome_fasta="/path/to/genome_fasta.fa"
$ save_dir="/path/to/save_dir/"
$ python $peaker_path resnet $dataset_path ohe $genome_fasta $save_dir --test
- Logistic Regression a.k.a linear
- Multi Layer Perceptron a.k.a mlp
- Residual Network a.k.a resnet
- One hot encoding a.k.a ohe - compatible with resnet
- k-mer creation a.k.a kmer - compatible with linear and mlp
- homer motif scan a.k.a homer - compatible with linear and mlp
- Integrated Gradients