Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 15 additions & 15 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,31 +21,31 @@

### 🔨 Build Reliable & Scalable GenAI Apps

- **Swap LLMs anytime** – Switch between [100+ LLMs via LiteLLM](https://ragbits.deepsense.ai/how-to/llms/use_llms/) or run [local models](https://ragbits.deepsense.ai/how-to/llms/use_local_llms/).
- **Type-safe LLM calls** – Use Python generics to [enforce strict type safety](https://ragbits.deepsense.ai/how-to/prompts/use_prompting/#how-to-configure-prompts-output-data-type) in model interactions.
- **Bring your own vector store** – Connect to [Qdrant](https://ragbits.deepsense.ai/api_reference/core/vector-stores/#ragbits.core.vector_stores.qdrant.QdrantVectorStore), [PgVector](https://ragbits.deepsense.ai/api_reference/core/vector-stores/#ragbits.core.vector_stores.pgvector.PgVectorStore), and more with built-in support.
- **Developer tools included** – [Manage vector stores](https://ragbits.deepsense.ai/cli/main/#ragbits-vector-store), query pipelines, and [test prompts from your terminal](https://ragbits.deepsense.ai/quickstart/quickstart1_prompts/#testing-the-prompt-from-the-cli).
- **Swap LLMs anytime** – Switch between [100+ LLMs via LiteLLM](https://ragbits.deepsense.ai/stable/how-to/llms/use_llms/) or run [local models](https://ragbits.deepsense.ai/stable/how-to/llms/use_local_llms/).
- **Type-safe LLM calls** – Use Python generics to [enforce strict type safety](https://ragbits.deepsense.ai/stable/how-to/prompts/use_prompting/#how-to-configure-prompts-output-data-type) in model interactions.
- **Bring your own vector store** – Connect to [Qdrant](https://ragbits.deepsense.ai/stable/api_reference/core/vector-stores/#ragbits.core.vector_stores.qdrant.QdrantVectorStore), [PgVector](https://ragbits.deepsense.ai/stable/api_reference/core/vector-stores/#ragbits.core.vector_stores.pgvector.PgVectorStore), and more with built-in support.
- **Developer tools included** – [Manage vector stores](https://ragbits.deepsense.ai/stable/cli/main/#ragbits-vector-store), query pipelines, and [test prompts from your terminal](https://ragbits.deepsense.ai/stable/quickstart/quickstart1_prompts/#testing-the-prompt-from-the-cli).
- **Modular installation** – Install only what you need, reducing dependencies and improving performance.

### 📚 Fast & Flexible RAG Processing

- **Ingest 20+ formats** – Process PDFs, HTML, spreadsheets, presentations, and more. Process data using [Docling](https://github.com/docling-project/docling), [Unstructured](https://github.com/Unstructured-IO/unstructured) or create a custom parser.
- **Handle complex data** – Extract tables, images, and structured content with built-in VLMs support.
- **Connect to any data source** – Use prebuilt connectors for S3, GCS, Azure, or implement your own.
- **Scale ingestion** – Process large datasets quickly with [Ray-based parallel processing](https://ragbits.deepsense.ai/how-to/document_search/distributed_ingestion/#how-to-ingest-documents-in-a-distributed-fashion).
- **Scale ingestion** – Process large datasets quickly with [Ray-based parallel processing](https://ragbits.deepsense.ai/stable/how-to/document_search/distributed_ingestion/#how-to-ingest-documents-in-a-distributed-fashion).

### 🤖 Build Multi-Agent Workflows with Ease

- **Multi-agent coordination** – Create teams of specialized agents with role-based collaboration using [A2A protocol](https://ragbits.deepsense.ai/tutorials/agents) for interoperability.
- **Real-time data integration** – Leverage [Model Context Protocol (MCP)](https://ragbits.deepsense.ai/how-to/agents/provide_mcp_tools) for live web access, database queries, and API integrations.
- **Conversation state management** – Maintain context across interactions with [automatic history tracking](https://ragbits.deepsense.ai/how-to/agents/define_and_use_agents/#conversation-history).
- **Multi-agent coordination** – Create teams of specialized agents with role-based collaboration using [A2A protocol](https://ragbits.deepsense.ai/stable/tutorials/agents) for interoperability.
- **Real-time data integration** – Leverage [Model Context Protocol (MCP)](https://ragbits.deepsense.ai/stable/how-to/agents/provide_mcp_tools) for live web access, database queries, and API integrations.
- **Conversation state management** – Maintain context across interactions with [automatic history tracking](https://ragbits.deepsense.ai/stable/how-to/agents/define_and_use_agents/#conversation-history).

### 🚀 Deploy & Monitor with Confidence

- **Real-time observability** – Track performance with [OpenTelemetry](https://ragbits.deepsense.ai/how-to/project/use_tracing/#opentelemetry-trace-handler) and [CLI insights](https://ragbits.deepsense.ai/how-to/project/use_tracing/#cli-trace-handler).
- **Built-in testing** – Validate prompts [with promptfoo](https://ragbits.deepsense.ai/how-to/prompts/promptfoo/) before deployment.
- **Real-time observability** – Track performance with [OpenTelemetry](https://ragbits.deepsense.ai/stable/how-to/project/use_tracing/#opentelemetry-trace-handler) and [CLI insights](https://ragbits.deepsense.ai/stable/how-to/project/use_tracing/#cli-trace-handler).
- **Built-in testing** – Validate prompts [with promptfoo](https://ragbits.deepsense.ai/stable/how-to/prompts/promptfoo/) before deployment.
- **Auto-optimization** – Continuously evaluate and refine model performance.
- **Chat UI** – Deploy [chatbot interface](https://ragbits.deepsense.ai/how-to/chatbots/api/) with API, persistance and user feedback.
- **Chat UI** – Deploy [chatbot interface](https://ragbits.deepsense.ai/stable/how-to/chatbots/api/) with API, persistance and user feedback.

## Installation

Expand Down Expand Up @@ -292,10 +292,10 @@ Explore `create-ragbits-app` repo [here](https://github.com/deepsense-ai/create-

## Documentation

- [Tutorials](https://ragbits.deepsense.ai/tutorials/intro) - Get started with Ragbits in a few minutes
- [How-to](https://ragbits.deepsense.ai/how-to/prompts/use_prompting) - Learn how to use Ragbits in your projects
- [CLI](https://ragbits.deepsense.ai/cli/main) - Learn how to run Ragbits in your terminal
- [API reference](https://ragbits.deepsense.ai/api_reference/core/prompt) - Explore the underlying Ragbits API
- [Tutorials](https://ragbits.deepsense.ai/stable/tutorials/intro) - Get started with Ragbits in a few minutes
- [How-to](https://ragbits.deepsense.ai/stable/how-to/prompts/use_prompting) - Learn how to use Ragbits in your projects
- [CLI](https://ragbits.deepsense.ai/stable/cli/main) - Learn how to run Ragbits in your terminal
- [API reference](https://ragbits.deepsense.ai/stable/api_reference/core/prompt) - Explore the underlying Ragbits API

## Contributing

Expand Down
22 changes: 11 additions & 11 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,31 +41,31 @@ hide:

### 🔨 Build Reliable & Scalable GenAI Apps

- **Swap LLMs anytime** – Switch between [100+ LLMs via LiteLLM](https://ragbits.deepsense.ai/how-to/llms/use_llms/) or run [local models](https://ragbits.deepsense.ai/how-to/llms/use_local_llms/)).
- **Type-safe LLM calls** – Use Python generics to [enforce strict type safety](https://ragbits.deepsense.ai/how-to/prompts/use_prompting/#how-to-configure-prompts-output-data-type) in model interactions.
- **Bring your own vector store** – Connect to [Qdrant](https://ragbits.deepsense.ai/api_reference/core/vector-stores/#ragbits.core.vector_stores.qdrant.QdrantVectorStore), [PgVector](https://ragbits.deepsense.ai/api_reference/core/vector-stores/#ragbits.core.vector_stores.pgvector.PgVectorStore), and more with built-in support.
- **Developer tools included** – [Manage vector stores](https://ragbits.deepsense.ai/cli/main/#ragbits-vector-store), query pipelines, and [test prompts from your terminal](https://ragbits.deepsense.ai/quickstart/quickstart1_prompts/#testing-the-prompt-from-the-cli).
- **Swap LLMs anytime** – Switch between [100+ LLMs via LiteLLM](https://ragbits.deepsense.ai/stable/how-to/llms/use_llms/) or run [local models](https://ragbits.deepsense.ai/stable/how-to/llms/use_local_llms/)).
- **Type-safe LLM calls** – Use Python generics to [enforce strict type safety](https://ragbits.deepsense.ai/stable/how-to/prompts/use_prompting/#how-to-configure-prompts-output-data-type) in model interactions.
- **Bring your own vector store** – Connect to [Qdrant](https://ragbits.deepsense.ai/stable/api_reference/core/vector-stores/#ragbits.core.vector_stores.qdrant.QdrantVectorStore), [PgVector](https://ragbits.deepsense.ai/stable/api_reference/core/vector-stores/#ragbits.core.vector_stores.pgvector.PgVectorStore), and more with built-in support.
- **Developer tools included** – [Manage vector stores](https://ragbits.deepsense.ai/stable/cli/main/#ragbits-vector-store), query pipelines, and [test prompts from your terminal](https://ragbits.deepsense.ai/stable/quickstart/quickstart1_prompts/#testing-the-prompt-from-the-cli).
- **Modular installation** – Install only what you need, reducing dependencies and improving performance.

### 📚 Fast & Flexible RAG Processing

- **Ingest 20+ formats** – Process PDFs, HTML, spreadsheets, presentations, and more. Process data using [Docling](https://github.com/docling-project/docling), [Unstructured](https://github.com/Unstructured-IO/unstructured) or create a custom parser.
- **Handle complex data** – Extract tables, images, and structured content with built-in VLMs support.
- **Connect to any data source** – Use prebuilt connectors for S3, GCS, Azure, or implement your own.
- **Scale ingestion** – Process large datasets quickly with [Ray-based parallel processing](https://ragbits.deepsense.ai/how-to/document_search/distributed_ingestion/#how-to-ingest-documents-in-a-distributed-fashion).
- **Scale ingestion** – Process large datasets quickly with [Ray-based parallel processing](https://ragbits.deepsense.ai/stable/how-to/document_search/distributed_ingestion/#how-to-ingest-documents-in-a-distributed-fashion).

### 🤖 Build Multi-Agent Workflows with Ease

- **Multi-agent coordination** – Create teams of specialized agents with role-based collaboration using [A2A protocol](https://ragbits.deepsense.ai/tutorials/agents/) for interoperability.
- **Real-time data integration** – Leverage [Model Context Protocol (MCP)](https://ragbits.deepsense.ai/how-to/provide_mcp_tools/) for live web access, database queries, and API integrations.
- **Conversation state management** – Maintain context across interactions with [automatic history tracking](https://ragbits.deepsense.ai/how-to/agents/define_and_use_agents/#conversation-history/).
- **Multi-agent coordination** – Create teams of specialized agents with role-based collaboration using [A2A protocol](https://ragbits.deepsense.ai/stable/tutorials/agents/) for interoperability.
- **Real-time data integration** – Leverage [Model Context Protocol (MCP)](https://ragbits.deepsense.ai/stable/how-to/provide_mcp_tools/) for live web access, database queries, and API integrations.
- **Conversation state management** – Maintain context across interactions with [automatic history tracking](https://ragbits.deepsense.ai/stable/how-to/agents/define_and_use_agents/#conversation-history/).

### 🚀 Deploy & Monitor with Confidence

- **Real-time observability** – Track performance with [OpenTelemetry](https://ragbits.deepsense.ai/how-to/project/use_tracing/#opentelemetry-trace-handler) and [CLI insights](https://ragbits.deepsense.ai/how-to/project/use_tracing/#cli-trace-handler).
- **Built-in testing** – Validate prompts [with promptfoo](https://ragbits.deepsense.ai/how-to/prompts/promptfoo/) before deployment.
- **Real-time observability** – Track performance with [OpenTelemetry](https://ragbits.deepsense.ai/stable/how-to/project/use_tracing/#opentelemetry-trace-handler) and [CLI insights](https://ragbits.deepsense.ai/stable/how-to/project/use_tracing/#cli-trace-handler).
- **Built-in testing** – Validate prompts [with promptfoo](https://ragbits.deepsense.ai/stable/how-to/prompts/promptfoo/) before deployment.
- **Auto-optimization** – Continuously evaluate and refine model performance.
- **Chat UI** – Deploy [chatbot interface](https://ragbits.deepsense.ai/how-to/chatbots/api/) with API, persistance and user feedback.
- **Chat UI** – Deploy [chatbot interface](https://ragbits.deepsense.ai/stable/how-to/chatbots/api/) with API, persistance and user feedback.


## Installation
Expand Down
Loading