Skip to content

denghilbert/ECCV2022-Hierarchical-Memory-Learning-for-Fine-Grained-Scene-Graph-Generation

Repository files navigation

Hierarchical Memory Learning for Fine-Grained Scene Graph Generation

LICENSE Python PyTorch

Our paper Hierarchical Memory Learning for Fine-Grained Scene Graph Generation has been accepted by ECCV 2022.

Installation

Follow this installation.

Dataset

Check dataset for instructions of dataset preprocessing.

Pretrained Models

You can download the pretrained Faster R-CNN we used in the paper.

Training for HML

I take the training PredCls for MOTIFS under HML as an example:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port 10030 --nproc_per_node=2 /home/dengyouming/project/HML/tools/relation_train_distill_fisher_only.py --config-file "/home/dengyouming/project/HML/configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.USE_CONFIDENCE False MODEL.DISTILL_TEMPERATURE 2 MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 2 DTYPE "float16" SOLVER.MAX_ITER 16000 SOLVER.VAL_PERIOD 1000 SOLVER.CHECKPOINT_PERIOD 1000 SOLVER.LAMBDA_FOR_PARAM 1.0 SOLVER.ALPHA_FOR_FISHER 0.5 SOLVER.DISTILL_TYPE l2 SOLVER.BASE_LR 0.001 GLOVE_DIR /home/dengyouming/project/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/dengyouming/project/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /home/dengyouming/project/eccv/motifs_hml

Evaluation

Evaluate model with following command:

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/test.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/dengyouming/project/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/dengyouming/project/eccv/motifs_hml OUTPUT_DIR /home/dengyouming/project/eccv/motifs_hml

Citations

If you find this project helps your research, please kindly consider citing our project or papers in your publications.

@inproceedings{deng2022hml,
  title={Hierarchical Memory Learning for Fine-Grained Scene Graph Generation},
  author={Deng, Youming and Li, Yansheng and Zhang, Yongjun and Xiang, Xiang and Wang, Jian and Chen, Jingdong and Ma, Jiayi},
  booktitle= "European Conference on Computer Vision",
  year={2022}
}

Acknowledgements

Part of our code is inherited from Unbiased SGG. We are grateful to the authors for releasing their code.

About

No description, website, or topics provided.

Resources

License

Unknown, Unknown licenses found

Licenses found

Unknown
LICENSE
Unknown
LICENSE.bak

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published