This repository has been archived by the owner on Apr 4, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert and tf-idf
314 lines (253 loc) · 11.4 KB
/
bert and tf-idf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import nltk.sentiment.vader as sent
import pandas as pd
from sklearn.metrics import confusion_matrix
import numpy as np
from sklearn import metrics
import emoji
from nltk.tokenize import TreebankWordTokenizer
from nltk.tokenize.treebank import TreebankWordDetokenizer
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn import tree
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
from gensim.models import Word2Vec
from textblob import TextBlob
import re
from nltk.tokenize import regexp_tokenize
from bert_embedding import BertEmbedding
import time
import winsound
class Data:
def __init__(self):
self.analyzer = sent.SentimentIntensityAnalyzer()
self.raw_tweets = None
self.train_labels = None
self.test_labels = None
self.nos_train_neu = 0
self.nos_train_pos = 0
self.nos_train_neg = 0
self.nos_test_neu = 0
self.nos_test_neg = 0
self.nos_test_pos = 0
self.get_tweets()
def get_tweets(self):
filename = 'Sentiment140.csv'
raw_train = pd.read_csv(filename,
header=None,
names=['Score', 'A', 'B', 'C', 'D', 'Tweet'])
self.raw_tweets = pd.Series(raw_train['Tweet'], dtype='str')
def create_train_label(self, train_tweet_sequence):
score = []
for tweet in train_tweet_sequence:
val = round(self.analyzer.polarity_scores(tweet)['compound'])
if val == 0:
self.nos_train_neu += 1
elif val == 1:
self.nos_train_pos += 1
else:
self.nos_train_neg += 1
score.append(val)
self.train_labels = pd.Series(score)
def create_test_label(self, test_tweet_sequence):
score = []
for tweet in test_tweet_sequence:
val = round(self.analyzer.polarity_scores(tweet)['compound'])
if val == 0:
self.nos_test_neu += 1
elif val == 1:
self.nos_test_pos += 1
else:
self.nos_test_neg += 1
score.append(val)
self.test_labels = pd.Series(score)
class PreProcessing:
def __init__(self, data_obj, processing_size=1600000, stem_and_stop=False):
data_obj.raw_tweets = data_obj.raw_tweets[: processing_size]
self.detokenized_corpus = []
self.tokenized_corpus = []
self.remove_url(data_obj)
self.remove_at(data_obj)
self.remove_apostrophe(data_obj)
self.remove_new_line(data_obj)
self.replace_emoticons(data_obj)
if stem_and_stop:
self.remove_stopwords_and_stem(data_obj)
self.spell_correction(data_obj, stem_and_stop)
@staticmethod
def remove_url(data_ob):
data_ob.raw_tweets = data_ob.raw_tweets.str.replace('http\S+|www.\S+', '', case=False)
@staticmethod
def remove_at(data_ob):
data_ob.raw_tweets = data_ob.raw_tweets.str.replace('@\S+', '', case=False)
@staticmethod
def remove_apostrophe(data_ob):
data_ob.raw_tweets = data_ob.raw_tweets.str.replace("’|'\S+", '', case=False)
@staticmethod
def remove_new_line(data_ob):
data_ob.raw_tweets = data_ob.raw_tweets.str.replace("\\n", '', case=False)
@staticmethod
def hyphen_to_space(data_ob):
data_ob.raw_tweets = data_ob.raw_tweets.str.replace("-", ' ', case=False)
@staticmethod
def replace_emoticons(data_ob):
for i in range(len(data_ob.raw_tweets)):
data_ob.raw_tweets[i] = emoji.demojize(data_ob.raw_tweets[i])
data_ob.raw_tweets = data_ob.raw_tweets.str.replace("_", ' ', case=False)
def remove_stopwords_and_stem(self, data_ob):
my_stopwords = list(stopwords.words('english'))
ps = PorterStemmer()
for tweet in data_ob.raw_tweets:
temp_list = [ps.stem(word) for word in TreebankWordTokenizer().tokenize(tweet) if word not in my_stopwords]
self.tokenized_corpus.append(temp_list)
def spell_correction(self, data_obj, stem_and_stop):
if not stem_and_stop:
self.tokenized_corpus = [[word for word in tweet.split()]for tweet in data_obj.raw_tweets]
self.tokenized_corpus = [[str(TextBlob(word).correct()) for word in tweet] for tweet in self.tokenized_corpus]
self.detokenized_corpus = [TreebankWordDetokenizer().detokenize(tweet) for tweet in self.tokenized_corpus]
self.detokenized_corpus = [re.sub('[^A-Za-z0-9 ]', '', tweet) for tweet in self.detokenized_corpus]
self.tokenized_corpus = [regexp_tokenize(tweet, r'\S*') for tweet in self.detokenized_corpus]
class WordEmbedding:
def __init__(self, prep_obj, method='w2v_tfidf'):
self.vector_corpus = []
if method == 'w2v_tfidf':
self.word_to_vec(prep_obj, use_tf_idf=True)
elif method == 'w2v':
self.word_to_vec(prep_obj, use_tf_idf=False)
elif method == 'cv':
self.count_vectorizer(prep_obj)
elif method == 'tfidf':
self.tf_idf(prep_obj)
elif method == 'glove':
self.glove(prep_obj)
elif method == 'bert':
self.bert(prep_obj, use_tf_idf=False)
elif method == 'bert_tf_idf':
self.bert(prep_obj, use_tf_idf=True)
def bert(self, prep_obj, use_tf_idf=False):
self.tf_idf(prep_obj)
tf_idf_vector = self.vector_corpus
self.vector_corpus = []
bert_embedding = BertEmbedding(model='bert_12_768_12', dataset_name='book_corpus_wiki_en_cased')
result = np.array(bert_embedding(prep_obj.detokenized_corpus))
vec = np.zeros(768)
for row, sentence in enumerate(result):
for column, word_vec in enumerate(sentence[1]):
mul = tf_idf_vector[row][column] if use_tf_idf else 1
vec = np.add(vec, np.array(word_vec) * mul)
vec = np.true_divide(vec, 1 if len(sentence[1]) == 0 else len(sentence[1]))
self.vector_corpus.append(vec)
def count_vectorizer(self, prep_obj):
self.vector_corpus = CountVectorizer().fit_transform(prep_obj.detokenized_corpus)
def tf_idf(self, prep_obj):
vectorizer = TfidfVectorizer(lowercase=False, analyzer='word', token_pattern="\S*")
vec = vectorizer.fit_transform(prep_obj.detokenized_corpus).todense().tolist()
feature_names = vectorizer.get_feature_names()
self.vector_corpus = [[vec[index][feature_names.index(word)] for word in tweet]
for index, tweet in enumerate(prep_obj.tokenized_corpus)]
def word_to_vec(self, prep_obj, use_tf_idf=False):
self.tf_idf(prep_obj)
tf_idf_vector = self.vector_corpus
self.vector_corpus = []
features = 100
model = gensim.models.Word2Vec(prep_obj.tokenized_corpus, min_count=1, workers=4, size=features, window=5, sg=0)
vec = np.zeros(features)
for row, tweet in enumerate(prep_obj.tokenized_corpus):
for column, word in enumerate(tweet):
mul = tf_idf_vector[row][column] if use_tf_idf else 1
vec = np.add(vec, np.array(model.wv[word]) * mul)
vec = np.true_divide(vec, 1 if len(tweet) == 0 else len(tweet))
self.vector_corpus.append(vec)
def glove(self, prep_obj):
embeddings_dict = {}
features = 100
with open("glove.twitter.27B." + str(features) + "d.txt", 'r', encoding="utf-8") as f:
for line in f:
values = line.split()
word = values[0]
vector = np.asarray(values[1:], "float32")
embeddings_dict[word] = vector
# if word is not in dictionary then its corresponding vector is taken as zero
vec = np.zeros(features)
self.vector_corpus = []
for tweet in prep_obj.tokenized_corpus:
for word in tweet:
try:
vec = np.add(vec, np.array(embeddings_dict[word]))
except ValueError:
pass
vec = np.true_divide(vec, 1 if len(tweet) == 0 else len(tweet))
self.vector_corpus.append(vec)
class Training:
def __init__(self, data_obj, prep_obj, word_embed_obj, train_size=80000, method='dt'):
data_obj.create_train_label(prep_obj.detokenized_corpus[: train_size])
self.X_train = word_embed_obj.vector_corpus[: train_size]
self.Y_train = data_obj.train_labels
self.clf = None
if method == 'dt':
self.decision_tree()
elif method == 'lin_svc':
self.linear_svc()
elif method == 'poly_svc':
self.poly_svc()
elif method == 'gauss_svc':
self.gaussian_svc()
def linear_svc(self):
self.clf = LinearSVC()
self.clf.fit(self.X_train, self.Y_train)
def poly_svc(self):
self.clf = SVC(kernel='poly', degree=3, coef0=1, C=100)
self.clf.fit(self.X_train, self.Y_train)
def gaussian_svc(self):
self.clf = SVC(kernel='rbf', gamma=5, C=100)
self.clf.fit(self.X_train, self.Y_train)
def decision_tree(self):
self.clf = tree.DecisionTreeClassifier()
self.clf.fit(self.X_train, self.Y_train)
class Testing:
def __init__(self, data_obj, prep_obj, word_embed_obj, training_obj, test_size=20000):
train_size = len(data_obj.train_labels)
data_obj.create_test_label(prep_obj.detokenized_corpus[train_size: train_size + test_size])
self.X_test = word_embed_obj.vector_corpus[train_size: train_size + test_size]
self.Y_test = data_obj.test_labels
self.clf = training_obj.clf
self.Y_pred = None
self.accuracy()
self.auc()
self.confusion_matrix()
def accuracy(self):
self.Y_pred = self.clf.predict(self.X_test)
print('Accuracy is :', accuracy_score(self.Y_test, self.Y_pred) * 100)
def auc(self):
print("\nArea under curve :")
self.Y_pred = self.clf.predict(self.X_test)
fpr, tpr, thresholds = metrics.roc_curve(self.Y_test, self.Y_pred, pos_label=1)
print("1", metrics.auc(fpr, tpr))
fpr, tpr, thresholds = metrics.roc_curve(self.Y_test, self.Y_pred, pos_label=0)
print("0", metrics.auc(fpr, tpr))
fpr, tpr, thresholds = metrics.roc_curve(self.Y_test, self.Y_pred, pos_label=-1)
print("-1", metrics.auc(fpr, tpr))
def confusion_matrix(self):
print('\nConfusion Matrix :')
self.Y_pred = self.clf.predict(self.X_test)
print(confusion_matrix(self.Y_test, self.Y_pred))
processing_size = 1000
train_fraction = 0.8
train_size = int(train_fraction * processing_size)
test_size = int((1 - train_fraction) * processing_size)
start_time = time.process_time()
dt = Data()
pp = PreProcessing(dt, processing_size=processing_size, stem_and_stop=False)
we = WordEmbedding(pp, method='bert_tf_idf')
tr = Training(dt, pp, we, train_size=train_size, method='dt')
te = Testing(dt, pp, we, tr, test_size=test_size)
end_time = time.process_time()
print("\nTime taken =", end_time - start_time)
print('\nnos_test_neg =', dt.nos_test_neg, '\tnos_train_neg =', dt.nos_train_neg)
print('nos_test_neu =', dt.nos_test_neu, '\tnos_train_neu =', dt.nos_train_neu)
print('nos_test_pos =', dt.nos_test_pos, '\tnos_train_pos =', dt.nos_train_pos)
winsound.Beep(1000, 2000)