-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformation.py
303 lines (231 loc) · 13.8 KB
/
transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# COMPROBAR
# row[fData] PUEDE SER ' ' O NUMERICO
# vconditionData == row[fData]:
import csv
import decimal
import pandas as pd
import numpy as np
import os.path
from enum import Enum
from dateutil import parser as date_parser
from datetime import datetime
from timeit import timeit
import re
FORMAT_DATE = "DD-MM-YYYY"
COMPLETED_STR = "2"
UNVERIFIED_STR = "1"
path = os.getcwd()
# pathCSV = path.join("data/template.csv")
# pathCSV = "C:\\Code\\redcap-etl-transformation-lambda\\data\\template.csv"
pathCSV = os.path.abspath(input("Relative File path with the REDCAP Project Template with updated mapping files on Row 2 (Default data/template.csv)") or "data\\template.csv")
pathCSV = pathCSV.strip()
pathNewCSV = os.path.abspath(input("Relative CSV File Path Converted (Default data/newfile.csv)") or "data\\newfile.csv")
pathNewCSV = pathNewCSV.strip()
# pathExcel = path.join("./data/")
#pathExcel = "C:\\Code\\redcap-etl-transformation-lambda\\data\\SampleDataTbi1987-2022Lite.xlsx"
# pathExcel = "C:\\Code\\redcap-etl-transformation-lambda\\data\\SampleDataTbi1987-2022New.xlsx"
pathExcel = os.path.abspath(input("Relative Excel Dataset File (Default \data\SampleData.xlsx)" ) or "data\\SampleData.xlsx")
pathExcel = pathExcel.strip()
print (pathNewCSV)
print (pathCSV)
print (pathExcel)
PATTERN_FIELD_CALCULATED = "if [FIELD][OPERATOR][EXPRESSION],[VALUE]" # p.e (if epcont_biv=0,0)
PATTERN_PREFIX = "if "
# VALORES A LIMPIAR O IGNORAR , MEJOR HACER LIMPIEZA EN DATAFRAME
PATTERN_VALUES_ERRORS_TARGET = ["#NULL!", ' ']
pattern_calculated_expression = "if +([0-9,a-z,A-Z,-,_]+)([,>,<,=]+)([0-9]+)(,+)([0-9]+)"
DEFAULT_CALCULATED_FIELDS_VALUES_FALSE_CONDITION = 0
class operations(Enum):
VALIDATE = "VALIDATE"
FILL = "FILL"
class operators(Enum):
EQUAL = "="
LESS = "<"
GREATER = ">"
GREATERIGUAL = ">="
LESSIGUAL = "<="
assert os.path.isfile(pathCSV)
assert os.path.isfile(pathExcel)
dfTemplateDataCVS = pd.read_csv(pathCSV,encoding='latin-1', sep = ";")
# COPIAMOS EL NUEVO DATAFRAME SIN FILAS, SOLO LA CABECERA
dfFinalDataCVS = dfTemplateDataCVS.copy()
dfFinalDataCVS[dfFinalDataCVS.columns[1:]] = ''
dfSampleData = pd.read_excel(pathExcel,decimal=',' ,thousands='.')
column_list = dfSampleData.columns.to_list()
def is_date_parsing(date_str):
try:
return bool(date_parser.parse(date_str))
except ValueError:
return False
def dropzeros(number):
mynum = decimal.Decimal(number).normalize()
# e.g 22000 --> Decimal('2.2E+4')
return mynum.__trunc__() if not mynum % 1 else float(mynum)
def date_format_from_timestamp(timestamp_str):
returnDate= ""
try:
if isinstance(timestamp_str, str): #STRING FROM DATAFRAME , TRYING DATE CONVERSIN
if is_date_parsing(timestamp_str):
returnDate = date_parser.parse(timestamp_str).strftime('%Y-%m-%d')
else: # TIMESTAMP
returnDate = timestamp_str.date().strftime('%Y-%m-%d')
return returnDate
except ValueError:
return ''
# RETURN:
# field = groups[0]
# condition = groups[1]
# value_condition = groups[2]
# true_condition = groups[3]
# 'if subd_1tc=1,1'
def splitCalculatedField(fieldData):
if PATTERN_PREFIX in fieldData:
resultformulafield = re.search(pattern_calculated_expression, fieldData)
if resultformulafield is None or resultformulafield.groups() is None:
return None , None, None, None, None
else:
groups = resultformulafield.groups()
# print (groups)
field = groups[0]
condition = groups[1]
value_condition = str(groups[2])
true_condition = str(groups[4])
return field, condition,value_condition,true_condition, DEFAULT_CALCULATED_FIELDS_VALUES_FALSE_CONDITION
else:
return None , None, None, None, None
# TEMPLATE CONTIENE EL NOMBRE DE LOS CAMPOS
# SEGUNDA FILA , LOS DATOS DE LOS CAMPOS DEL EXCEL A IMPORTAR
def listSearchItems(value, listToSearch):
bFound = False
if value is not None:
for item in listToSearch:
if str(value)==item:
bFound = True
break
return bFound
new_row_dict_columns_mapping = dict()
print ("Starting validation entry data..")
if dfTemplateDataCVS is not None:
#for index,row in dfTemplateDataCVS.iterrows(): ## SOLO COGEMOS EL ROW == 1 QUE ES EL QUE MARCA LOS NOMBRES A BUSCAR
# if row is not None: # empty rows avoid
MappingColumnsCSVRow = dfTemplateDataCVS.iloc[[0]] #FIRST ROW ONLY
for col_name in dfTemplateDataCVS.columns:
# search por column in data
#searchValueList = lambda value,listSearch: [True if value in item else False for item in listSearch]
#bColumnExists = searchValueList(col_name,column_list)
#print (row[col_name])
failedFields = 0
# new_row = {'Name': 'David', 'Age': 40}
if dfTemplateDataCVS[col_name] is not None:
# isNa = pd.isna(MappingColumnsCSVRow[col_name])
newColumnFieldName = col_name # VALOR DE COLUMNA PARA INSERTAR EN EL NUEVO DICT
newColumnFieldValue = "" # VALOR DEL EXCEL CON EL DATA
if bool(pd.isna(MappingColumnsCSVRow[col_name])[0]) is False: # hay columna de mapeo
# [0] --> Object to native type
searchValueColumn = MappingColumnsCSVRow[col_name][0]
bColumnExists = listSearchItems(searchValueColumn, column_list)
if bColumnExists is False:
# VERIFICAMOS SI ES UN PATRON VALIDO EN CASO DE QUE SEA CALCULADO
#
fieldData,conditionData,value_conditionData,true_condition,else_conditionData = None,None,None,None,None
fieldData,conditionData,value_conditionData,true_condition,else_conditionData = splitCalculatedField(searchValueColumn)
# print (f"resultformulafield {resultformulafield} row[col_name] {row[col_name]}")
if fieldData is None:
print (f"Columna {searchValueColumn} pattern is not valid (ex. if epcont_biv=0,0)")
failedFields = failedFields+1
else:
bCalculatedColumnExists = listSearchItems(fieldData,column_list)
if bCalculatedColumnExists is False:
print (f"Columna {searchValueColumn} or {fieldData} does no exists")
failedFields = failedFields+1
# else: # DIRECT COLUMN EXISTS
# newColumnFieldValue = MappingColumnsCSVRow[col_name]
if failedFields==0:
newColumnFieldValue = searchValueColumn
columnItemDict = {newColumnFieldName :newColumnFieldValue}
new_row_dict_columns_mapping.update(columnItemDict)
else:
columnItemDict = {newColumnFieldName :''} # columna vacia
new_row_dict_columns_mapping.update(columnItemDict)
new_list_values = [] # dict()
controws = 0;
if failedFields == 0: ## va correcto el proceso
print ("No wrong fields, creating mapping process")
for index,row in dfSampleData.iterrows(): ## SOLO COGEMOS EL ROW == 1 QUE ES EL QUE MARCA LOS NOMBRES A BUSCAR
# if row is not None: # empty rows avoid
new_dict_values = dict()
for itemkey in new_row_dict_columns_mapping:
if PATTERN_PREFIX in new_row_dict_columns_mapping[itemkey]:
fData,cData,vconditionData,true_condition,falseconditionData = None,None,None,None, None
calculatedFieldValue = new_row_dict_columns_mapping[itemkey]
fData,cData,vconditionData,true_condition,falseconditionData = splitCalculatedField(calculatedFieldValue)
if fData is not None and row[fData] is not None and str(row[fData]).strip()!='':
mappingFieldValue = str(row[fData])
if cData == operators.EQUAL.value:
if vconditionData == mappingFieldValue:
calculatedFieldValue = true_condition
else:
calculatedFieldValue = falseconditionData
if cData == operators.GREATER.value:
if mappingFieldValue > vconditionData:
calculatedFieldValue = true_condition
else:
calculatedFieldValue = falseconditionData
if cData == operators.GREATERIGUAL.value:
if mappingFieldValue >= vconditionData:
calculatedFieldValue = true_condition
else:
calculatedFieldValue = falseconditionData
if cData == operators.LESS.value:
if mappingFieldValue < vconditionData:
calculatedFieldValue = true_condition
else:
calculatedFieldValue = falseconditionData
if cData == operators.LESSIGUAL.value:
if vconditionData <= mappingFieldValue:
calculatedFieldValue = true_condition
else:
calculatedFieldValue = falseconditionData
final_data_redcap_row_column = {itemkey : calculatedFieldValue} # TO CHANGED WITH EVALUATE EXPRESSION
else:
# DD-MM-YYYY (NO HOURS)
# . FOR DECIMAL SEPARATOR
#
if new_row_dict_columns_mapping[itemkey] == '' or pd.isna(row[new_row_dict_columns_mapping[itemkey]]) or row[new_row_dict_columns_mapping[itemkey]] in PATTERN_VALUES_ERRORS_TARGET: ## contador field
final_data_redcap_row_column = {itemkey : controws+1 if itemkey=='record_id' else ''}
else:
if itemkey == "dias_isquemia" :
debug = 1
if isinstance(row[new_row_dict_columns_mapping[itemkey]], float): #
rounded = row[new_row_dict_columns_mapping[itemkey]] # round(row[new_row_dict_columns_mapping[itemkey]], 6)
rounded = dropzeros(rounded)
# roundedDecimalFormat = str(rounded).replace(".",",")
final_data_redcap_row_column = {itemkey : rounded }
else:
if isinstance(row[new_row_dict_columns_mapping[itemkey]], int) or (isinstance(row[new_row_dict_columns_mapping[itemkey]], str) and row[new_row_dict_columns_mapping[itemkey]].isnumeric()): # isinstance(row[new_row_dict_columns_mapping[itemkey]], int): #
final_data_redcap_row_column = {itemkey : row[new_row_dict_columns_mapping[itemkey]] }
else: #timestamp
dateformatValue = date_format_from_timestamp(row[new_row_dict_columns_mapping[itemkey]])
if dateformatValue.strip() !='':
final_data_redcap_row_column = {itemkey : dateformatValue}
else:
final_data_redcap_row_column = {itemkey : ''}
new_dict_values.update(final_data_redcap_row_column)
# VERIFICAMOS SI ES UN CAMPO CALCULADO (debug)
# if itemkey == "dias_isquemia" and new_row_dict_columns_mapping[itemkey].strip()!='':
# print (f"{itemkey} {new_row_dict_columns_mapping[itemkey]} {row[new_row_dict_columns_mapping[itemkey]]} {final_data_redcap_row_column}")
# END OF DATA ROW, UPDATING TO THE ROW OF REDCAP TEMPLATE
# INDEX IS REQUIRED WITH
new_list_values.append(new_dict_values)
controws = controws + 1;
index_data = np.arange(1,controws-1)
dfFinalDataCVS = pd.DataFrame.from_dict(new_list_values)
dfFinalDataCVS.loc[:, "hoja_general_recogida_datos_complete"] = COMPLETED_STR
dfFinalDataCVS.loc[:,"primer_tc_complete"] = COMPLETED_STR
dfFinalDataCVS.loc[:,"peor_tc_complete"] = COMPLETED_STR
dfFinalDataCVS.loc[:,"rm_complete"] = UNVERIFIED_STR
dfFinalDataCVS.loc[:,"lesin_cerebrovascular_traumatica_complete"] = UNVERIFIED_STR
dfFinalDataCVS.loc[:,"tratamiento_complete"] = COMPLETED_STR
dfFinalDataCVS.loc[:,"evolucin_complete"] = UNVERIFIED_STR
print (f"Writing file to {pathNewCSV}")
dfFinalDataCVS.to_csv(pathNewCSV,sep = ';', index=False)