Skip to content

Commit

Permalink
Merge pull request #210 from mcippo/master
Browse files Browse the repository at this point in the history
Actualizo EOH a marzo
  • Loading branch information
eliansoutu authored May 22, 2024
2 parents 961123e + 1a9df00 commit 0aadb02
Show file tree
Hide file tree
Showing 6 changed files with 647 additions and 645 deletions.
2 changes: 2 additions & 0 deletions .Rproj.user/shared/notebooks/paths
Original file line number Diff line number Diff line change
@@ -1,2 +1,4 @@
/home/mcipponeri/dnme_apps/eoh.Rmd="E2D75A31"
/home/mcipponeri/informes_pdf/eoh/eoh.Rmd="0860C381"
/home/spinelli/ECONOMIA/dnme_apps/empleo.Rmd="D182E1D0"
/home/ssoubiel/trabajos/dnme_apps/conectividad.Rmd="D6491511"
1,260 changes: 630 additions & 630 deletions docs/eoh.html

Large diffs are not rendered by default.

Binary file modified docs/eoh_files/figure-html5/unnamed-chunk-11-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified docs/eoh_files/figure-html5/unnamed-chunk-9-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
18 changes: 9 additions & 9 deletions docs/search.json

Large diffs are not rendered by default.

12 changes: 6 additions & 6 deletions eoh.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ Sys.setlocale(locale = "es_AR.UTF-8")
# Definir mes / trimestre / año de referencia para títulos ----
fecha <- as.Date("2024-02-01")
mes <- "Febrero"
fecha <- as.Date("2024-03-01")
mes <- "Marzo"
#trimestre <- "2do"
anio <- "2024"
Expand Down Expand Up @@ -250,7 +250,7 @@ name_cat2 <- tabla2[tabla2$pernoctes_total == sort(tabla2$pernoctes_total)[lengt
### (Publicado en `r format(Sys.time(), '%B %Y')` con datos actualizados a `r paste(tolower(mes)," de ",anio)`)


+ En `r tolower(mes)` de `r anio`, se hospedaron `r format(round(as.numeric(tablafinal_ficha[3,5]),1), decimal.mark = ",", big.mark = ".")` millones de viajeros (cayendo `r format(round(as.numeric(tablafinal_ficha[3,6]*100),1), decimal.mark = ",", big.mark = ".")`% en comparación con el mismo mes de 2022) con una estadía de `r format(round(as.numeric(tablafinal_ficha[3,7]),1), decimal.mark = ",", big.mark = ".")` noches en promedio (`r format(round(as.numeric(tablafinal_ficha[3,8]*100),1), decimal.mark = ",", big.mark = ".")`% var. i.a). **El total de pernoctes registrados ascendió a `r format(round(as.numeric(tablafinal_ficha[3,3]),1), decimal.mark = ",", big.mark = ".")` millones de noches (`r format(round(as.numeric(tablafinal_ficha[3,4]*100),1), decimal.mark = ",", big.mark = ".")`% var .i.a)**.
+ En `r tolower(mes)` de `r anio`, se hospedaron `r format(round(as.numeric(tablafinal_ficha[3,5]),1), decimal.mark = ",", big.mark = ".")` millones de viajeros (cayendo `r format(round(as.numeric(tablafinal_ficha[3,6]*100),1), decimal.mark = ",", big.mark = ".")`% en comparación con el mismo mes de 2023) con una estadía de `r format(round(as.numeric(tablafinal_ficha[3,7]),1), decimal.mark = ",", big.mark = ".")` noches en promedio (`r format(round(as.numeric(tablafinal_ficha[3,8]*100),1), decimal.mark = ",", big.mark = ".")`% var. i.a). **El total de pernoctes registrados ascendió a `r format(round(as.numeric(tablafinal_ficha[3,3]),1), decimal.mark = ",", big.mark = ".")` millones de noches (`r format(round(as.numeric(tablafinal_ficha[3,4]*100),1), decimal.mark = ",", big.mark = ".")`% var .i.a)**.

+ El `r format(round(as.numeric(tablafinal_ficha[1,5]/tablafinal_ficha[3,5]*100),0), decimal.mark = ",", big.mark = ".")`% de los viajeros hospedados fueron residentes, los cuales registraron el `r format(round(as.numeric(tablafinal_ficha[1,3]/tablafinal_ficha[3,3]*100),0), decimal.mark = ",", big.mark = ".")`% de las pernoctaciones.

Expand Down Expand Up @@ -787,7 +787,7 @@ check <- nrow(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na
<br>


+ **La mayor cantidad de pernoctaciones se registraron en la región `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))`**, con `r format(round(as.numeric(max(tabla3_A$pernoctes_total, na.rm = T)), 1), decimal.mark = ",", big.mark = ".")` mil noches, seguida por `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil) y `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil noches), mientras que en la distribución de los viajeros **fue la región `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` la que concentró la mayor cantidad (`r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil)**, seguida por `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` y `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (con `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil y `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil viajeros hospedados, respectivamente).
+ **La mayor cantidad de pernoctaciones se registraron en la región `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))`**, con `r format(round(as.numeric(max(tabla3_A$pernoctes_total, na.rm = T)), 1), decimal.mark = ",", big.mark = ".")` mil noches, seguida por `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil) y `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil noches), mientras que en la distribución de los viajeros **fue, nuevamente, la región `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` la que concentró la mayor cantidad (`r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil)**, seguida por `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` y `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (con `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil y `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil viajeros hospedados, respectivamente).

+ Las mayores estadías en `r tolower(mes)` de `r anio` se estimaron en `r ifelse(check == 1, as.character(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino))), paste0(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)) %>% head(1), " y ", tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)) %>% tail(1)))` con `r format(round(as.numeric(unique(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "estadia_total"] %>% filter(!is.na(estadia_total)))), 1), decimal.mark = ",", big.mark = ".")` noches promedio.

Expand All @@ -803,8 +803,8 @@ check <- nrow(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na
pernoctaciones_localidad <-read.csv("/srv/DataDNMYE/eoh/recursos/recursos_ficha/pernoctes-viajeros-y-estadia-media-por-localidad.csv", encoding = "UTF-8")
#Localidades que no corresponde mostrar datos (AD HOC,INDEC)
localidades_sin_datos <- c("Corrientes","Valle de Uco","Las Grutas")
localidades_insuficiencia <- c("La Angostura","Calafate")
localidades_sin_datos <- c("Corrientes","Puerto Iguazú","Neuquén","Las Grutas")
localidades_insuficiencia <- c("Las Grutas","Calafate")
#Tabla localidades
tabla4 <- pernoctaciones_localidad %>%
Expand Down

0 comments on commit 0aadb02

Please sign in to comment.