Skip to content

Commit

Permalink
Merge pull request #218 from mcippo/master
Browse files Browse the repository at this point in the history
Actualizo EOH a abril
  • Loading branch information
eliansoutu authored Jun 25, 2024
2 parents 95756b1 + e065569 commit 2e1ace0
Show file tree
Hide file tree
Showing 6 changed files with 650 additions and 649 deletions.
1 change: 1 addition & 0 deletions .Rproj.user/shared/notebooks/paths
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
/home/mcipponeri/dnme_apps/eoh.Rmd="F71E7CEE"
/home/spinelli/ECONOMIA/dnme_apps/empleo.Rmd="D182E1D0"
/home/spinelli/ECONOMIA/dnme_apps/mulc.Rmd="AD9C910A"
/home/ssoubiel/trabajos/cnrt/informe/skeleton.Rmd="DF6B813B"
Expand Down
1,272 changes: 636 additions & 636 deletions docs/eoh.html

Large diffs are not rendered by default.

Binary file modified docs/eoh_files/figure-html5/unnamed-chunk-11-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified docs/eoh_files/figure-html5/unnamed-chunk-9-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
20 changes: 10 additions & 10 deletions docs/search.json

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions eoh.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ Sys.setlocale(locale = "es_AR.UTF-8")
# Definir mes / trimestre / año de referencia para títulos ----
fecha <- as.Date("2024-03-01")
mes <- "Marzo"
fecha <- as.Date("2024-04-01")
mes <- "Abril"
#trimestre <- "2do"
anio <- "2024"
Expand Down Expand Up @@ -787,7 +787,7 @@ check <- nrow(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na
<br>


+ **La mayor cantidad de pernoctaciones se registraron en la región `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))`**, con `r format(round(as.numeric(max(tabla3_A$pernoctes_total, na.rm = T)), 1), decimal.mark = ",", big.mark = ".")` mil noches, seguida por `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil) y `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil noches), mientras que en la distribución de los viajeros **fue, nuevamente, la región `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` la que concentró la mayor cantidad (`r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil)**, seguida por `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` y `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (con `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil y `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil viajeros hospedados, respectivamente).
+ **La mayor cantidad de pernoctaciones se registraron en la región `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))`**, con `r format(round(as.numeric(max(tabla3_A$pernoctes_total, na.rm = T)), 1), decimal.mark = ",", big.mark = ".")` mil noches, seguida por `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-1], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil) y `r as.character(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (`r format(round(as.numeric(tabla3_A[tabla3_A$pernoctes_total == sort(tabla3_A$pernoctes_total, na.last = T)[length(tabla3_A$pernoctes_total)-2], "pernoctes_total"] %>% filter(!is.na(pernoctes_total))), 1), decimal.mark = ",", big.mark = ".")` mil noches), mismas localidades se destacaron en la distribución de los viajeros **ya que fue, nuevamente, la región `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` la que concentró la mayor cantidad (`r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil)**, seguida por `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` y `r as.character(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "region_de_destino"] %>% filter(!is.na(region_de_destino)))` (con `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-1], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil y `r format(round(as.numeric(tabla3_A[tabla3_A$viajeros_total == sort(tabla3_A$viajeros_total, na.last = T)[length(tabla3_A$viajeros_total)-2], "viajeros_total"] %>% filter(!is.na(viajeros_total))), 1), decimal.mark = ",", big.mark = ".")` mil viajeros hospedados, respectivamente).

+ Las mayores estadías en `r tolower(mes)` de `r anio` se estimaron en `r ifelse(check == 1, as.character(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino))), paste0(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)) %>% head(1), " y ", tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "region_de_destino"] %>% filter(!is.na(region_de_destino)) %>% tail(1)))` con `r format(round(as.numeric(unique(tabla3_A[tabla3_A$estadia_total == sort(tabla3_A$estadia_total, na.last = T)[length(tabla3_A$estadia_total)], "estadia_total"] %>% filter(!is.na(estadia_total)))), 1), decimal.mark = ",", big.mark = ".")` noches promedio.

Expand Down

0 comments on commit 2e1ace0

Please sign in to comment.