-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
785 additions
and
779 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,289 +1,48 @@ | ||
#include "fastcpd_classes.h" | ||
#include "fastcpd_functions.h" | ||
|
||
using ::fastcpd::functions::negative_log_likelihood_arma; | ||
using ::fastcpd::functions::negative_log_likelihood_glm; | ||
using ::fastcpd::functions::negative_log_likelihood_lasso_cv; | ||
using ::fastcpd::functions::negative_log_likelihood_lasso_wo_cv; | ||
using ::fastcpd::functions::negative_log_likelihood_mean; | ||
using ::fastcpd::functions::negative_log_likelihood_meanvariance; | ||
using ::fastcpd::functions::negative_log_likelihood_mgaussian; | ||
using ::fastcpd::functions::negative_log_likelihood_variance; | ||
|
||
namespace fastcpd::classes { | ||
|
||
CostResult Fastcpd::negative_log_likelihood( | ||
mat data, | ||
Nullable<colvec> theta, | ||
double lambda, | ||
bool cv, | ||
Nullable<colvec> start | ||
) { | ||
CostResult cost_result; | ||
if (theta.isNull()) { | ||
cost_result = negative_log_likelihood_wo_theta(data, lambda, cv, start); | ||
} else { | ||
cost_result = CostResult{ | ||
{colvec()}, | ||
{colvec()}, | ||
negative_log_likelihood_wo_cv(data, as<colvec>(theta), lambda) | ||
}; | ||
} | ||
cost_result.value = adjust_cost_value(cost_result.value, data.n_rows); | ||
return cost_result; | ||
ColMat::operator colvec() const { | ||
// TODO(doccstat): Add a warning if the matrix has more than one column. | ||
return data.as_col(); | ||
} | ||
|
||
CostResult Fastcpd::negative_log_likelihood_wo_theta( | ||
mat data, | ||
double lambda, | ||
bool cv, | ||
Nullable<colvec> start | ||
) { | ||
CostResult cost_result; | ||
if (family == "lasso" && cv) { | ||
cost_result = negative_log_likelihood_lasso_cv(data); | ||
} else if (family == "lasso" && !cv) { | ||
cost_result = negative_log_likelihood_lasso_wo_cv(data, lambda); | ||
} else if ( | ||
family == "binomial" || family == "poisson" || family == "gaussian" | ||
) { | ||
cost_result = negative_log_likelihood_glm(data, start, family); | ||
} else if (family == "arma") { | ||
cost_result = negative_log_likelihood_arma(data, order); | ||
} else if (family == "mean") { | ||
cost_result = negative_log_likelihood_mean(data, variance_estimate); | ||
} else if (family == "variance") { | ||
cost_result = negative_log_likelihood_variance(data, variance_data_mean); | ||
} else if (family == "meanvariance" || family == "mv") { | ||
cost_result = negative_log_likelihood_meanvariance(data, epsilon); | ||
} else if (family == "mgaussian") { | ||
cost_result = negative_log_likelihood_mgaussian( | ||
data, p_response, variance_estimate | ||
); | ||
} else { | ||
// # nocov start | ||
stop("This branch should not be reached at fastcpd_class_cost.cc: 193."); | ||
// # nocov end | ||
} | ||
return cost_result; | ||
ColMat::operator mat() const { | ||
return data; | ||
} | ||
|
||
double Fastcpd::negative_log_likelihood_wo_cv( | ||
ColMat::operator rowvec() const { | ||
// TODO(doccstat): Add a warning if the matrix has more than one column. | ||
return data.as_col().t(); | ||
} | ||
|
||
CostFunction::CostFunction(Function cost) : cost(cost) {} | ||
|
||
CostResult CostFunction::operator()( // # nocov | ||
mat data, | ||
colvec theta, | ||
double lambda | ||
Nullable<colvec> theta, | ||
double lambda, // UNUSED | ||
bool cv, // UNUSED | ||
Nullable<colvec> start // UNUSED | ||
) { | ||
vec y = data.col(0); | ||
if (family == "lasso" || family == "gaussian") { | ||
// Calculate negative log likelihood in gaussian family | ||
double penalty = lambda * accu(abs(theta)); | ||
mat x = data.cols(1, data.n_cols - 1); | ||
return accu(square(y - x * theta)) / 2 + penalty; | ||
} else if (family == "binomial") { | ||
// Calculate negative log likelihood in binomial family | ||
mat x = data.cols(1, data.n_cols - 1); | ||
colvec u = x * theta; | ||
return accu(-y % u + arma::log(1 + exp(u))); | ||
} else if (family == "poisson") { | ||
mat x = data.cols(1, data.n_cols - 1); | ||
colvec u = x * theta; | ||
colvec y_factorial(y.n_elem); | ||
for (unsigned int i = 0; i < y.n_elem; i++) { | ||
double log_factorial = 0; | ||
for (int j = 1; j <= y(i); ++j) { | ||
log_factorial += std::log(j); | ||
} | ||
y_factorial(i) = log_factorial; | ||
} | ||
|
||
return accu(-y % u + exp(u) + y_factorial); | ||
} else if (family == "arma") { | ||
colvec reversed_theta = reverse(theta); | ||
if (data.n_rows < max(order) + 1) { | ||
return 0; | ||
} | ||
colvec variance_term = zeros(data.n_rows); | ||
for (unsigned int i = max(order); i < data.n_rows; i++) { | ||
variance_term(i) = data(i, 0) - dot( | ||
reversed_theta.rows(order(1) + 1, sum(order)), | ||
data.rows(i - order(0), i - 1) | ||
) - dot( | ||
reversed_theta.rows(1, order(1)), | ||
variance_term.rows(i - order(1), i - 1) | ||
); | ||
} | ||
return (std::log(2.0 * M_PI) + | ||
std::log(theta(sum(order)))) * (data.n_rows - 2) / 2.0 + | ||
dot(variance_term, variance_term) / 2.0 / theta(sum(order)); | ||
} else { | ||
// # nocov start | ||
stop("This branch should not be reached at functions.cc: 248."); | ||
// # nocov end | ||
} | ||
DEBUG_RCOUT(data.n_rows); | ||
SEXP value = | ||
theta.isNull() ? cost(data) : cost(data, as<colvec>(theta)); // # nocov | ||
return {{colvec()}, {colvec()}, as<double>(value)}; // # nocov | ||
} | ||
|
||
colvec Fastcpd::cost_update_gradient(mat data, colvec theta) { | ||
rowvec new_data = data.row(data.n_rows - 1); | ||
rowvec x = new_data.tail(new_data.n_elem - 1); | ||
double y = new_data(0); | ||
colvec gradient; | ||
if (family.compare("binomial") == 0) { | ||
gradient = - (y - 1 / (1 + exp(-as_scalar(x * theta)))) * x.t(); | ||
} else if (family.compare("poisson") == 0) { | ||
gradient = - (y - exp(as_scalar(x * theta))) * x.t(); | ||
} else if (family == "lasso" || family == "gaussian") { | ||
gradient = - (y - as_scalar(x * theta)) * x.t(); | ||
} else if (family == "arma") { | ||
mat reversed_data = reverse(data, 0); | ||
colvec reversed_theta = reverse(theta); | ||
if (data.n_rows < max(order) + 1) { | ||
return ones(theta.n_elem); | ||
} | ||
colvec variance_term = zeros(data.n_rows); | ||
for (unsigned int i = max(order); i < data.n_rows; i++) { | ||
variance_term(i) = data(i, 0) - dot( | ||
reversed_theta.rows(order(1) + 1, sum(order)), | ||
data.rows(i - order(0), i - 1) | ||
) - dot( | ||
reversed_theta.rows(1, order(1)), | ||
variance_term.rows(i - order(1), i - 1) | ||
); | ||
} | ||
colvec reversed_variance_term = reverse(variance_term); | ||
mat phi_coefficient = zeros(data.n_rows, order(0)), | ||
psi_coefficient = zeros(data.n_rows, order(1)); | ||
for (unsigned int i = max(order); i < data.n_rows; i++) { | ||
phi_coefficient.row(i) = -reversed_data.rows( | ||
data.n_rows - i, data.n_rows - i + order(0) - 1 | ||
).t() - reversed_theta.rows(1, order(1)).t() * | ||
phi_coefficient.rows(i - order(1), i - 1); | ||
} | ||
for (unsigned int i = order(1); i < data.n_rows; i++) { | ||
psi_coefficient.row(i) = -reversed_variance_term.rows( | ||
data.n_rows - i, data.n_rows - i + order(1) - 1 | ||
).t() - reversed_theta.rows(1, order(1)).t() * | ||
psi_coefficient.rows(i - order(1), i - 1); | ||
} | ||
gradient = zeros(sum(order) + 1); | ||
gradient.rows(0, order(0) - 1) = phi_coefficient.row(data.n_rows - 1).t() * | ||
variance_term(data.n_rows - 1) / theta(sum(order)); | ||
gradient.rows(order(0), sum(order) - 1) = | ||
psi_coefficient.row(data.n_rows - 1).t() * | ||
variance_term(data.n_rows - 1) / theta(sum(order)); | ||
gradient(sum(order)) = 1.0 / 2.0 / theta(sum(order)) - | ||
std::pow(variance_term(data.n_rows - 1), 2) / 2.0 / | ||
std::pow(theta(sum(order)), 2); | ||
} else { | ||
// # nocov start | ||
stop("This branch should not be reached at functions.cc: 188."); | ||
// # nocov end | ||
} | ||
return gradient; | ||
CostGradient::CostGradient(Function cost_gradient) : | ||
cost_gradient(cost_gradient) {} | ||
|
||
colvec CostGradient::operator()(mat data, colvec theta) { | ||
return as<colvec>(cost_gradient(data, theta)); | ||
} | ||
|
||
mat Fastcpd::cost_update_hessian(mat data, colvec theta) { | ||
rowvec new_data = data.row(data.n_rows - 1); | ||
rowvec x = new_data.tail(new_data.n_elem - 1); | ||
mat hessian; | ||
if (family.compare("binomial") == 0) { | ||
double prob = 1 / (1 + exp(-as_scalar(x * theta))); | ||
hessian = (x.t() * x) * as_scalar((1 - prob) * prob); | ||
} else if (family.compare("poisson") == 0) { | ||
double prob = exp(as_scalar(x * theta)); | ||
// Prevent numerical issues if `prob` is too large. | ||
hessian = (x.t() * x) * std::min(as_scalar(prob), 1e10); | ||
} else if (family == "lasso" || family == "gaussian") { | ||
hessian = x.t() * x; | ||
} else if (family == "arma") { | ||
// TODO(doccstat): Maybe we can store all these computations | ||
mat reversed_data = reverse(data, 0); | ||
colvec reversed_theta = reverse(theta); | ||
if (data.n_rows < max(order) + 1) { | ||
return eye(theta.n_elem, theta.n_elem); | ||
} | ||
colvec variance_term = zeros(data.n_rows); | ||
for (unsigned int i = max(order); i < data.n_rows; i++) { | ||
variance_term(i) = data(i, 0) - dot( | ||
reversed_theta.rows(order(1) + 1, sum(order)), | ||
data.rows(i - order(0), i - 1) | ||
) - dot( | ||
reversed_theta.rows(1, order(1)), | ||
variance_term.rows(i - order(1), i - 1) | ||
); | ||
} | ||
colvec reversed_variance_term = reverse(variance_term); | ||
mat phi_coefficient = zeros(data.n_rows, order(0)), | ||
psi_coefficient = zeros(data.n_rows, order(1)); | ||
for (unsigned int i = max(order); i < data.n_rows; i++) { | ||
phi_coefficient.row(i) = -reversed_data.rows( | ||
data.n_rows - i, data.n_rows - i + order(0) - 1 | ||
).t() - reversed_theta.rows(1, order(1)).t() * | ||
phi_coefficient.rows(i - order(1), i - 1); | ||
} | ||
for (unsigned int i = order(1); i < data.n_rows; i++) { | ||
psi_coefficient.row(i) = -reversed_variance_term.rows( | ||
data.n_rows - i, data.n_rows - i + order(1) - 1 | ||
).t() - reversed_theta.rows(1, order(1)).t() * | ||
psi_coefficient.rows(i - order(1), i - 1); | ||
} | ||
mat reversed_coef_phi = reverse(phi_coefficient, 0), | ||
reversed_coef_psi = reverse(psi_coefficient, 0); | ||
cube phi_psi_coefficient = zeros(order(1), order(0), data.n_rows), | ||
psi_psi_coefficient = zeros(order(1), order(1), data.n_rows); | ||
for (unsigned int i = order(1); i < data.n_rows; i++) { | ||
mat phi_psi_coefficient_part = zeros(order(1), order(0)), | ||
psi_psi_coefficient_part = zeros(order(1), order(1)); | ||
for (unsigned int j = 1; j <= order(1); j++) { | ||
phi_psi_coefficient_part += | ||
phi_psi_coefficient.slice(i - j) * theta(order(0) - 1 + j); | ||
} | ||
phi_psi_coefficient.slice(i) = -reversed_coef_phi.rows( | ||
data.n_rows - i, data.n_rows - i + order(1) - 1 | ||
) - phi_psi_coefficient_part; | ||
for (unsigned int j = 1; j <= order(1); j++) { | ||
psi_psi_coefficient_part += | ||
psi_psi_coefficient.slice(i - j) * theta(order(0) - 1 + j); | ||
} | ||
psi_psi_coefficient.slice(i) = -reversed_coef_psi.rows( | ||
data.n_rows - i, data.n_rows - i + order(1) - 1 | ||
) - reversed_coef_psi.rows( | ||
data.n_rows - i, data.n_rows - i + order(1) - 1 | ||
).t() - psi_psi_coefficient_part; | ||
} | ||
hessian = zeros(sum(order) + 1, sum(order) + 1); | ||
hessian.submat(0, 0, order(0) - 1, order(0) - 1) = | ||
phi_coefficient.row(data.n_rows - 1).t() * | ||
phi_coefficient.row(data.n_rows - 1) / theta(sum(order)); | ||
hessian.submat(0, order(0), order(0) - 1, sum(order) - 1) = ( | ||
phi_psi_coefficient.slice(data.n_rows - 1).t() * | ||
variance_term(data.n_rows - 1) + | ||
phi_coefficient.row(data.n_rows - 1).t() * | ||
psi_coefficient.row(data.n_rows - 1) | ||
) / theta(sum(order)); | ||
hessian.submat(order(0), 0, sum(order) - 1, order(0) - 1) = | ||
hessian.submat(0, order(0), order(0) - 1, sum(order) - 1).t(); | ||
hessian.submat(0, sum(order), order(0) - 1, sum(order)) = | ||
-phi_coefficient.row(data.n_rows - 1).t() * | ||
variance_term(data.n_rows - 1) / theta(sum(order)) / theta(sum(order)); | ||
hessian.submat(sum(order), 0, sum(order), order(0) - 1) = | ||
hessian.submat(0, sum(order), order(0) - 1, sum(order)).t(); | ||
hessian.submat(order(0), order(0), sum(order) - 1, sum(order) - 1) = ( | ||
psi_coefficient.row(data.n_rows - 1).t() * | ||
psi_coefficient.row(data.n_rows - 1) + | ||
psi_psi_coefficient.slice(data.n_rows - 1) * | ||
variance_term(data.n_rows - 1) | ||
) / theta(sum(order)); | ||
hessian.submat(order(0), sum(order), sum(order) - 1, sum(order)) = | ||
-psi_coefficient.row(data.n_rows - 1).t() * | ||
variance_term(data.n_rows - 1) / theta(sum(order)) / theta(sum(order)); | ||
hessian.submat(sum(order), order(0), sum(order), sum(order) - 1) = | ||
hessian.submat(order(0), sum(order), sum(order) - 1, sum(order)).t(); | ||
hessian(sum(order), sum(order)) = | ||
std::pow(variance_term(data.n_rows - 1), 2) / | ||
std::pow(theta(sum(order)), 3) - | ||
1.0 / 2.0 / std::pow(theta(sum(order)), 2); | ||
} | ||
return hessian; | ||
CostHessian::CostHessian(Function cost_hessian) : | ||
cost_hessian(cost_hessian) {} | ||
|
||
mat CostHessian::operator()(mat data, colvec theta) { | ||
return as<mat>(cost_hessian(data, theta)); | ||
} | ||
|
||
} // namespace fastcpd::classes |
Oops, something went wrong.