Skip to content

Latest commit

 

History

History
195 lines (155 loc) · 4.93 KB

File metadata and controls

195 lines (155 loc) · 4.93 KB
comments difficulty edit_url rating source tags
true
中等
1459
第 170 场周赛 Q2
位运算
数组
前缀和

English Version

题目描述

有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]

对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor ... xor arr[Ri])作为本次查询的结果。

并返回一个包含给定查询 queries 所有结果的数组。

 

示例 1:

输入:arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
输出:[2,7,14,8] 
解释:
数组中元素的二进制表示形式是:
1 = 0001 
3 = 0011 
4 = 0100 
8 = 1000 
查询的 XOR 值为:
[0,1] = 1 xor 3 = 2 
[1,2] = 3 xor 4 = 7 
[0,3] = 1 xor 3 xor 4 xor 8 = 14 
[3,3] = 8

示例 2:

输入:arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
输出:[8,0,4,4]

 

提示:

  • 1 <= arr.length <= 3 * 10^4
  • 1 <= arr[i] <= 10^9
  • 1 <= queries.length <= 3 * 10^4
  • queries[i].length == 2
  • 0 <= queries[i][0] <= queries[i][1] < arr.length

解法

方法一:前缀异或

我们可以用一个长度为 $n+1$ 的前缀异或数组 $s$ 来存储数组 $\textit{arr}$ 的前缀异或结果,其中 $s[i] = s[i-1] \oplus \textit{arr}[i-1]$,即 $s[i]$ 表示 $\textit{arr}$ 的前 $i$ 个元素的异或结果。

那么对于一个查询 $[l,r]$,我们可以得到:

$$ \begin{aligned} \textit{arr}[l] \oplus \textit{arr}[l+1] \oplus \cdots \oplus \textit{arr}[r] &= (\textit{arr}[0] \oplus \textit{arr}[1] \oplus \cdots \oplus \textit{arr}[l-1]) \oplus (\textit{arr}[0] \oplus \textit{arr}[1] \oplus \cdots \oplus \textit{arr}[r]) \\ &= s[l] \oplus s[r+1] \end{aligned} $$

时间复杂度 $O(n+m)$,空间复杂度 $O(n)$。其中 $n$$m$ 分别是数组 $\textit{arr}$ 的长度和查询数组 $\textit{queries}$ 的长度。

Python3

class Solution:
    def xorQueries(self, arr: List[int], queries: List[List[int]]) -> List[int]:
        s = list(accumulate(arr, xor, initial=0))
        return [s[r + 1] ^ s[l] for l, r in queries]

Java

class Solution {
    public int[] xorQueries(int[] arr, int[][] queries) {
        int n = arr.length;
        int[] s = new int[n + 1];
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] ^ arr[i - 1];
        }
        int m = queries.length;
        int[] ans = new int[m];
        for (int i = 0; i < m; ++i) {
            int l = queries[i][0], r = queries[i][1];
            ans[i] = s[r + 1] ^ s[l];
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> xorQueries(vector<int>& arr, vector<vector<int>>& queries) {
        int n = arr.size();
        int s[n + 1];
        memset(s, 0, sizeof(s));
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] ^ arr[i - 1];
        }
        vector<int> ans;
        for (auto& q : queries) {
            int l = q[0], r = q[1];
            ans.push_back(s[r + 1] ^ s[l]);
        }
        return ans;
    }
};

Go

func xorQueries(arr []int, queries [][]int) (ans []int) {
	n := len(arr)
	s := make([]int, n+1)
	for i, x := range arr {
		s[i+1] = s[i] ^ x
	}
	for _, q := range queries {
		l, r := q[0], q[1]
		ans = append(ans, s[r+1]^s[l])
	}
	return
}

TypeScript

function xorQueries(arr: number[], queries: number[][]): number[] {
    const n = arr.length;
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] ^ arr[i];
    }
    return queries.map(([l, r]) => s[r + 1] ^ s[l]);
}

JavaScript

/**
 * @param {number[]} arr
 * @param {number[][]} queries
 * @return {number[]}
 */
var xorQueries = function (arr, queries) {
    const n = arr.length;
    const s = Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] ^ arr[i];
    }
    return queries.map(([l, r]) => s[r + 1] ^ s[l]);
};