Skip to content

Latest commit

 

History

History
192 lines (154 loc) · 4.99 KB

File metadata and controls

192 lines (154 loc) · 4.99 KB
comments difficulty edit_url rating source tags
true
Medium
1459
Weekly Contest 170 Q2
Bit Manipulation
Array
Prefix Sum

中文文档

Description

You are given an array arr of positive integers. You are also given the array queries where queries[i] = [lefti, righti].

For each query i compute the XOR of elements from lefti to righti (that is, arr[lefti] XOR arr[lefti + 1] XOR ... XOR arr[righti] ).

Return an array answer where answer[i] is the answer to the ith query.

 

Example 1:

Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8] 
Explanation: 
The binary representation of the elements in the array are:
1 = 0001 
3 = 0011 
4 = 0100 
8 = 1000 
The XOR values for queries are:
[0,1] = 1 xor 3 = 2 
[1,2] = 3 xor 4 = 7 
[0,3] = 1 xor 3 xor 4 xor 8 = 14 
[3,3] = 8

Example 2:

Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]

 

Constraints:

  • 1 <= arr.length, queries.length <= 3 * 104
  • 1 <= arr[i] <= 109
  • queries[i].length == 2
  • 0 <= lefti <= righti < arr.length

Solutions

Solution 1: Prefix XOR

We can use a prefix XOR array $s$ of length $n+1$ to store the prefix XOR results of the array $\textit{arr}$, where $s[i] = s[i-1] \oplus \textit{arr}[i-1]$. That is, $s[i]$ represents the XOR result of the first $i$ elements of $\textit{arr}$.

For a query $[l, r]$, we can obtain:

$$ \begin{aligned} \textit{arr}[l] \oplus \textit{arr}[l+1] \oplus \cdots \oplus \textit{arr}[r] &= (\textit{arr}[0] \oplus \textit{arr}[1] \oplus \cdots \oplus \textit{arr}[l-1]) \oplus (\textit{arr}[0] \oplus \textit{arr}[1] \oplus \cdots \oplus \textit{arr}[r]) \\ &= s[l] \oplus s[r+1] \end{aligned} $$

Time complexity is $O(n+m)$, and space complexity is $O(n)$. Here, $n$ and $m$ are the lengths of the array $\textit{arr}$ and the query array $\textit{queries}$, respectively.

Python3

class Solution:
    def xorQueries(self, arr: List[int], queries: List[List[int]]) -> List[int]:
        s = list(accumulate(arr, xor, initial=0))
        return [s[r + 1] ^ s[l] for l, r in queries]

Java

class Solution {
    public int[] xorQueries(int[] arr, int[][] queries) {
        int n = arr.length;
        int[] s = new int[n + 1];
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] ^ arr[i - 1];
        }
        int m = queries.length;
        int[] ans = new int[m];
        for (int i = 0; i < m; ++i) {
            int l = queries[i][0], r = queries[i][1];
            ans[i] = s[r + 1] ^ s[l];
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> xorQueries(vector<int>& arr, vector<vector<int>>& queries) {
        int n = arr.size();
        int s[n + 1];
        memset(s, 0, sizeof(s));
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] ^ arr[i - 1];
        }
        vector<int> ans;
        for (auto& q : queries) {
            int l = q[0], r = q[1];
            ans.push_back(s[r + 1] ^ s[l]);
        }
        return ans;
    }
};

Go

func xorQueries(arr []int, queries [][]int) (ans []int) {
	n := len(arr)
	s := make([]int, n+1)
	for i, x := range arr {
		s[i+1] = s[i] ^ x
	}
	for _, q := range queries {
		l, r := q[0], q[1]
		ans = append(ans, s[r+1]^s[l])
	}
	return
}

TypeScript

function xorQueries(arr: number[], queries: number[][]): number[] {
    const n = arr.length;
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] ^ arr[i];
    }
    return queries.map(([l, r]) => s[r + 1] ^ s[l]);
}

JavaScript

/**
 * @param {number[]} arr
 * @param {number[][]} queries
 * @return {number[]}
 */
var xorQueries = function (arr, queries) {
    const n = arr.length;
    const s = Array(n + 1).fill(0);
    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] ^ arr[i];
    }
    return queries.map(([l, r]) => s[r + 1] ^ s[l]);
};