Skip to content

dpeerlab/segger

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Installation

pip

Before installing segger, please install GPU-accelerated versions of PyTorch, RAPIDS, and related packages compatible with your system. Please ensure all CUDA-enabled packages are compiled for the same CUDA version.

For example, on Linux with CUDA 12.1 and PyTorch 2.5.0:

# Install PyTorch and torchvision for CUDA 12.1
pip install torch==2.5.0 torchvision==0.20.0 --index-url https://download.pytorch.org/whl/cu121

# Install torch_scatter for CUDA 12.1
pip install torch_scatter -f https://data.pyg.org/whl/torch-2.5.0+cu121.html

# Install RAPIDS packages for CUDA 12.x
pip install --extra-index-url=https://pypi.nvidia.com cuspatial-cu12 cudf-cu12 cuml-cu12 cugraph-cu12

# Install CuPy for CUDA 12.x
pip install cupy-cuda12x

December 2025: To stay up-to-date with new developments, we recommend installing the latest version directly from GitHub:

# Clone segger repo and install locally
git clone https://github.com/dpeerlab/segger.git segger && cd segger
pip install -e .

Usage

You can run segger from the command line with:

segger segment -i /path/to/your/ist/data/ -o /path/to/save/outputs/

To see all available parameter options:

segger segment --help

About

WIP. Please check back very soon for updates!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages