Before installing segger, please install GPU-accelerated versions of PyTorch, RAPIDS, and related packages compatible with your system. Please ensure all CUDA-enabled packages are compiled for the same CUDA version.
- PyTorch & torchvision: Installation guide
- torch_scatter: Installation guide
- RAPIDS (cuDF, cuML, cuGraph): Installation guide
- CuPy: Installation guide
- cuSpatial: Installation guide
For example, on Linux with CUDA 12.1 and PyTorch 2.5.0:
# Install PyTorch and torchvision for CUDA 12.1
pip install torch==2.5.0 torchvision==0.20.0 --index-url https://download.pytorch.org/whl/cu121
# Install torch_scatter for CUDA 12.1
pip install torch_scatter -f https://data.pyg.org/whl/torch-2.5.0+cu121.html
# Install RAPIDS packages for CUDA 12.x
pip install --extra-index-url=https://pypi.nvidia.com cuspatial-cu12 cudf-cu12 cuml-cu12 cugraph-cu12
# Install CuPy for CUDA 12.x
pip install cupy-cuda12xDecember 2025: To stay up-to-date with new developments, we recommend installing the latest version directly from GitHub:
# Clone segger repo and install locally
git clone https://github.com/dpeerlab/segger.git segger && cd segger
pip install -e .You can run segger from the command line with:
segger segment -i /path/to/your/ist/data/ -o /path/to/save/outputs/To see all available parameter options:
segger segment --help