Mini piattaforma MLOps: training di un modello di classificazione fraud/no-fraud, servizio di prediction via API, test, Docker e CI.
Disclaimer This repository is an educational demo for end-to-end ML (training + serving). The model is trained on synthetic data and must not be used to make real financial decisions. No real personal data is included.
python -m venv .venv && source .venv/bin/activate # (Windows: .venv\Scripts\activate)
pip install -r requirements.txt
python training/train.py # genera models/model.pkl
uvicorn app.main:app --reload # http://localhost:8000/docs
GET /health
→ statoPOST /predict
→ body:{ "features": [0.1, 0.2, 0.3, ...] }
pytest -q
docker build -t fraudwatch-api .
docker run -p 8000:8000 fraudwatch-api
# oppure
docker compose up --build
fraudwatch-python/
app/
main.py
routers/predict.py
schemas.py
training/train.py
models/ (generata)
tests/test_api.py
requirements.txt
Dockerfile
docker-compose.yml
.github/workflows/python-ci.yml
Makefile
- Synthetic dataset; results are illustrative only.
- No calibration/monitoring/drift checks included yet.
- No PII is processed; do not submit real customer data to the demo API.
- Before any production use, add: data governance, monitoring, bias audits, rate limiting, auth, logging, model registry (e.g., MLflow).
© drfb02