-
Notifications
You must be signed in to change notification settings - Fork 98
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
181 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
160 changes: 160 additions & 0 deletions
160
inst/examples/mini_starmap_test/mini_starmap_v0.3.5_200614.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
|
||
|
||
library(Giotto) | ||
|
||
# createGiottoInstructions(python_path = '/your/path') | ||
|
||
## Giotto 0.3.5 ## | ||
## mini-test Visium Brain Giotto 0.3.5 ## | ||
|
||
## !! change this directory path !!: | ||
temp_dir = '/path/to/your/temporary/directory/results' | ||
temp_dir = '/Volumes/Ruben_Seagate/Dropbox/Projects/GC_lab/Ruben_Dries/190225_spatial_package/Results/Temp/starmap/' | ||
|
||
## 1. giotto object #### | ||
expr_path = system.file("extdata", "starmap_expr.txt", package = 'Giotto') | ||
loc_path = system.file("extdata", "starmap_cell_loc.txt", package = 'Giotto') | ||
|
||
# default | ||
star_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path) | ||
|
||
## 2. processing steps #### | ||
filterDistributions(star_small, detection = 'genes') | ||
filterDistributions(star_small, detection = 'cells') | ||
filterCombinations(star_small, | ||
expression_thresholds = c(1), | ||
gene_det_in_min_cells = c(50, 100, 200), | ||
min_det_genes_per_cell = c(20, 28, 28)) | ||
|
||
star_small <- filterGiotto(gobject = star_small, | ||
expression_threshold = 1, | ||
gene_det_in_min_cells = 50, | ||
min_det_genes_per_cell = 20, | ||
expression_values = c('raw'), | ||
verbose = T) | ||
star_small <- normalizeGiotto(gobject = star_small, scalefactor = 6000, verbose = T) | ||
star_small <- addStatistics(gobject = star_small) | ||
|
||
|
||
## 3. dimension reduction #### | ||
star_small <- runPCA(gobject = star_small, method = 'factominer') | ||
screePlot(star_small, ncp = 30) | ||
plotPCA(gobject = star_small) | ||
|
||
# 2D umap | ||
star_small <- runUMAP(star_small, dimensions_to_use = 1:8) | ||
plotUMAP(gobject = star_small) | ||
|
||
# 3D umap | ||
star_small <- runUMAP(star_small, dimensions_to_use = 1:8, name = '3D_umap', n_components = 3) | ||
plotUMAP_3D(gobject = star_small, dim_reduction_name = '3D_umap') | ||
|
||
# 2D tsne | ||
star_small <- runtSNE(star_small, dimensions_to_use = 1:8) | ||
plotTSNE(gobject = star_small) | ||
|
||
## 4. clustering #### | ||
star_small <- createNearestNetwork(gobject = star_small, dimensions_to_use = 1:8, k = 25) | ||
star_small <- doLeidenCluster(gobject = star_small, resolution = 0.5, n_iterations = 1000) | ||
|
||
# 2D umap | ||
plotUMAP(gobject = star_small, cell_color = 'leiden_clus', show_NN_network = T, point_size = 2.5) | ||
|
||
# 3D umap | ||
plotUMAP_3D(gobject = star_small, dim_reduction_name = '3D_umap', cell_color = 'leiden_clus') | ||
|
||
|
||
## 5. co-visualize #### | ||
|
||
# 2D | ||
spatDimPlot(gobject = star_small, cell_color = 'leiden_clus', | ||
dim_point_size = 2, spat_point_size = 2.5) | ||
|
||
# 3D | ||
spatDimPlot3D(gobject = star_small, cell_color = 'leiden_clus', dim_reduction_name = '3D_umap') | ||
|
||
|
||
|
||
## 6. differential expression #### | ||
markers = findMarkers_one_vs_all(gobject = star_small, | ||
method = 'gini', | ||
expression_values = 'normalized', | ||
cluster_column = 'leiden_clus') | ||
|
||
# violinplot | ||
topgenes = markers[, head(.SD, 2), by = 'cluster']$genes | ||
violinPlot(star_small, genes = topgenes, cluster_column = 'leiden_clus') | ||
|
||
# genes heatmap | ||
plotHeatmap(star_small, genes = star_small@gene_ID, cluster_column = 'leiden_clus', | ||
legend_nrows = 2, expression_values = 'scaled', | ||
cluster_order = 'correlation', gene_order = 'correlation') | ||
|
||
# cluster heatmap | ||
plotMetaDataHeatmap(star_small, expression_values = 'scaled', metadata_cols = c('leiden_clus')) | ||
|
||
|
||
|
||
## 7. gene expression | ||
dimGenePlot3D(star_small, | ||
dim_reduction_name = '3D_umap', | ||
expression_values = 'scaled', | ||
genes = "Pcp4", | ||
genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue') | ||
|
||
spatGenePlot3D(star_small, | ||
expression_values = 'scaled', | ||
genes = "Pcp4", | ||
show_other_cells = F, | ||
genes_high_color = 'red', genes_mid_color = 'white', genes_low_color = 'darkblue') | ||
|
||
|
||
|
||
|
||
## 8. cross section | ||
# install.packages('geometry') # necessary for 3D delaunay network | ||
star_small <- createSpatialNetwork(gobject = star_small, delaunay_method = 'delaunayn_geometry') | ||
|
||
star_small = createCrossSection(star_small, | ||
method="equation", | ||
equation=c(0,1,0,600), | ||
extend_ratio = 0.6) | ||
|
||
# show cross section | ||
insertCrossSectionSpatPlot3D(star_small, cell_color = 'leiden_clus', | ||
axis_scale = 'cube', | ||
point_size = 2) | ||
|
||
insertCrossSectionGenePlot3D(star_small, expression_values = 'scaled', | ||
axis_scale = "cube", | ||
genes = "Slc17a7") | ||
|
||
|
||
# for cell annotation | ||
crossSectionPlot(star_small, | ||
point_size = 2, point_shape = "border", | ||
cell_color = "leiden_clus") | ||
|
||
crossSectionPlot3D(star_small, | ||
point_size = 2, cell_color = "leiden_clus", | ||
axis_scale = "cube") | ||
|
||
|
||
# for gene expression | ||
crossSectionGenePlot(star_small, | ||
genes = "Slc17a7", | ||
point_size = 2, | ||
point_shape = "border", | ||
cow_n_col = 1.5, | ||
expression_values = 'scaled') | ||
|
||
crossSectionGenePlot3D(star_small, | ||
point_size = 2, | ||
genes = c("Slc17a7"), | ||
expression_values = 'scaled') | ||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters