forked from molimat/YOLOv4-Counter-in-TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackbone.py
167 lines (134 loc) · 8.11 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#! /usr/bin/env python
# coding=utf-8
import tensorflow as tf
import core.common as common
def darknet53(input_data):
input_data = common.convolutional(input_data, (3, 3, 3, 32))
input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True)
for i in range(1):
input_data = common.residual_block(input_data, 64, 32, 64)
input_data = common.convolutional(input_data, (3, 3, 64, 128), downsample=True)
for i in range(2):
input_data = common.residual_block(input_data, 128, 64, 128)
input_data = common.convolutional(input_data, (3, 3, 128, 256), downsample=True)
for i in range(8):
input_data = common.residual_block(input_data, 256, 128, 256)
route_1 = input_data
input_data = common.convolutional(input_data, (3, 3, 256, 512), downsample=True)
for i in range(8):
input_data = common.residual_block(input_data, 512, 256, 512)
route_2 = input_data
input_data = common.convolutional(input_data, (3, 3, 512, 1024), downsample=True)
for i in range(4):
input_data = common.residual_block(input_data, 1024, 512, 1024)
return route_1, route_2, input_data
def cspdarknet53(input_data):
input_data = common.convolutional(input_data, (3, 3, 3, 32), activate_type="mish")
input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True, activate_type="mish")
route = input_data
route = common.convolutional(route, (1, 1, 64, 64), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish")
for i in range(1):
input_data = common.residual_block(input_data, 64, 32, 64, activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish")
input_data = tf.concat([input_data, route], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 128, 64), activate_type="mish")
input_data = common.convolutional(input_data, (3, 3, 64, 128), downsample=True, activate_type="mish")
route = input_data
route = common.convolutional(route, (1, 1, 128, 64), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 128, 64), activate_type="mish")
for i in range(2):
input_data = common.residual_block(input_data, 64, 64, 64, activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish")
input_data = tf.concat([input_data, route], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 128, 128), activate_type="mish")
input_data = common.convolutional(input_data, (3, 3, 128, 256), downsample=True, activate_type="mish")
route = input_data
route = common.convolutional(route, (1, 1, 256, 128), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 256, 128), activate_type="mish")
for i in range(8):
input_data = common.residual_block(input_data, 128, 128, 128, activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 128, 128), activate_type="mish")
input_data = tf.concat([input_data, route], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 256, 256), activate_type="mish")
route_1 = input_data
input_data = common.convolutional(input_data, (3, 3, 256, 512), downsample=True, activate_type="mish")
route = input_data
route = common.convolutional(route, (1, 1, 512, 256), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 512, 256), activate_type="mish")
for i in range(8):
input_data = common.residual_block(input_data, 256, 256, 256, activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 256, 256), activate_type="mish")
input_data = tf.concat([input_data, route], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 512, 512), activate_type="mish")
route_2 = input_data
input_data = common.convolutional(input_data, (3, 3, 512, 1024), downsample=True, activate_type="mish")
route = input_data
route = common.convolutional(route, (1, 1, 1024, 512), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 1024, 512), activate_type="mish")
for i in range(4):
input_data = common.residual_block(input_data, 512, 512, 512, activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 512, 512), activate_type="mish")
input_data = tf.concat([input_data, route], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 1024, 1024), activate_type="mish")
input_data = common.convolutional(input_data, (1, 1, 1024, 512))
input_data = common.convolutional(input_data, (3, 3, 512, 1024))
input_data = common.convolutional(input_data, (1, 1, 1024, 512))
input_data = tf.concat([tf.nn.max_pool(input_data, ksize=13, padding='SAME', strides=1), tf.nn.max_pool(input_data, ksize=9, padding='SAME', strides=1)
, tf.nn.max_pool(input_data, ksize=5, padding='SAME', strides=1), input_data], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 2048, 512))
input_data = common.convolutional(input_data, (3, 3, 512, 1024))
input_data = common.convolutional(input_data, (1, 1, 1024, 512))
return route_1, route_2, input_data
def cspdarknet53_tiny(input_data):
input_data = common.convolutional(input_data, (3, 3, 3, 32), downsample=True)
input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True)
input_data = common.convolutional(input_data, (3, 3, 64, 64))
route = input_data
input_data = common.route_group(input_data, 2, 1)
input_data = common.convolutional(input_data, (3, 3, 32, 32))
route_1 = input_data
input_data = common.convolutional(input_data, (3, 3, 32, 32))
input_data = tf.concat([input_data, route_1], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 32, 64))
input_data = tf.concat([route, input_data], axis=-1)
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 64, 128))
route = input_data
input_data = common.route_group(input_data, 2, 1)
input_data = common.convolutional(input_data, (3, 3, 64, 64))
route_1 = input_data
input_data = common.convolutional(input_data, (3, 3, 64, 64))
input_data = tf.concat([input_data, route_1], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 64, 128))
input_data = tf.concat([route, input_data], axis=-1)
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 128, 256))
route = input_data
input_data = common.route_group(input_data, 2, 1)
input_data = common.convolutional(input_data, (3, 3, 128, 128))
route_1 = input_data
input_data = common.convolutional(input_data, (3, 3, 128, 128))
input_data = tf.concat([input_data, route_1], axis=-1)
input_data = common.convolutional(input_data, (1, 1, 128, 256))
route_1 = input_data
input_data = tf.concat([route, input_data], axis=-1)
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 512, 512))
return route_1, input_data
def darknet53_tiny(input_data):
input_data = common.convolutional(input_data, (3, 3, 3, 16))
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 16, 32))
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 32, 64))
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 64, 128))
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 128, 256))
route_1 = input_data
input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 256, 512))
input_data = tf.keras.layers.MaxPool2D(2, 1, 'same')(input_data)
input_data = common.convolutional(input_data, (3, 3, 512, 1024))
return route_1, input_data