Skip to content

dyzheng/numpy-ml

This branch is 28 commits behind ddbourgin/numpy-ml:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1e10697 · Jun 23, 2021
Apr 11, 2020
May 10, 2020
Jun 23, 2021
Aug 12, 2019
Apr 11, 2020
Jul 12, 2019
Apr 11, 2020
Apr 5, 2019
Jun 20, 2020
Jun 20, 2020
Jun 20, 2020
May 25, 2021
Jun 20, 2020
Jun 20, 2020
Jun 20, 2020

Repository files navigation

numpy-ml

Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No?

Installation

For rapid experimentation

To use this code as a starting point for ML prototyping / experimentation, just clone the repository, create a new virtualenv, and start hacking:

$ git clone https://github.com/ddbourgin/numpy-ml.git
$ cd numpy-ml && virtualenv npml && source npml/bin/activate
$ pip3 install -r requirements-dev.txt

As a package

If you don't plan to modify the source, you can also install numpy-ml as a Python package: pip3 install -u numpy_ml.

The reinforcement learning agents train on environments defined in the OpenAI gym. To install these alongside numpy-ml, you can use pip3 install -u 'numpy_ml[rl]'.

Documentation

For more details on the available models, see the project documentation.

Available models

  1. Gaussian mixture model

    • EM training
  2. Hidden Markov model

    • Viterbi decoding
    • Likelihood computation
    • MLE parameter estimation via Baum-Welch/forward-backward algorithm
  3. Latent Dirichlet allocation (topic model)

    • Standard model with MLE parameter estimation via variational EM
    • Smoothed model with MAP parameter estimation via MCMC
  4. Neural networks

    • Layers / Layer-wise ops
      • Add
      • Flatten
      • Multiply
      • Softmax
      • Fully-connected/Dense
      • Sparse evolutionary connections
      • LSTM
      • Elman-style RNN
      • Max + average pooling
      • Dot-product attention
      • Embedding layer
      • Restricted Boltzmann machine (w. CD-n training)
      • 2D deconvolution (w. padding and stride)
      • 2D convolution (w. padding, dilation, and stride)
      • 1D convolution (w. padding, dilation, stride, and causality)
    • Modules
      • Bidirectional LSTM
      • ResNet-style residual blocks (identity and convolution)
      • WaveNet-style residual blocks with dilated causal convolutions
      • Transformer-style multi-headed scaled dot product attention
    • Regularizers
      • Dropout
    • Normalization
      • Batch normalization (spatial and temporal)
      • Layer normalization (spatial and temporal)
    • Optimizers
      • SGD w/ momentum
      • AdaGrad
      • RMSProp
      • Adam
    • Learning Rate Schedulers
      • Constant
      • Exponential
      • Noam/Transformer
      • Dlib scheduler
    • Weight Initializers
      • Glorot/Xavier uniform and normal
      • He/Kaiming uniform and normal
      • Standard and truncated normal
    • Losses
      • Cross entropy
      • Squared error
      • Bernoulli VAE loss
      • Wasserstein loss with gradient penalty
      • Noise contrastive estimation loss
    • Activations
      • ReLU
      • Tanh
      • Affine
      • Sigmoid
      • Leaky ReLU
      • ELU
      • SELU
      • Exponential
      • Hard Sigmoid
      • Softplus
    • Models
      • Bernoulli variational autoencoder
      • Wasserstein GAN with gradient penalty
      • word2vec encoder with skip-gram and CBOW architectures
    • Utilities
      • col2im (MATLAB port)
      • im2col (MATLAB port)
      • conv1D
      • conv2D
      • deconv2D
      • minibatch
  5. Tree-based models

    • Decision trees (CART)
    • [Bagging] Random forests
    • [Boosting] Gradient-boosted decision trees
  6. Linear models

    • Ridge regression
    • Logistic regression
    • Ordinary least squares
    • Bayesian linear regression w/ conjugate priors
      • Unknown mean, known variance (Gaussian prior)
      • Unknown mean, unknown variance (Normal-Gamma / Normal-Inverse-Wishart prior)
  7. n-Gram sequence models

    • Maximum likelihood scores
    • Additive/Lidstone smoothing
    • Simple Good-Turing smoothing
  8. Multi-armed bandit models

    • UCB1
    • LinUCB
    • Epsilon-greedy
    • Thompson sampling w/ conjugate priors
      • Beta-Bernoulli sampler
    • LinUCB
  9. Reinforcement learning models

    • Cross-entropy method agent
    • First visit on-policy Monte Carlo agent
    • Weighted incremental importance sampling Monte Carlo agent
    • Expected SARSA agent
    • TD-0 Q-learning agent
    • Dyna-Q / Dyna-Q+ with prioritized sweeping
  10. Nonparameteric models

    • Nadaraya-Watson kernel regression
    • k-Nearest neighbors classification and regression
    • Gaussian process regression
  11. Matrix factorization

    • Regularized alternating least-squares
    • Non-negative matrix factorization
  12. Preprocessing

    • Discrete Fourier transform (1D signals)
    • Discrete cosine transform (type-II) (1D signals)
    • Bilinear interpolation (2D signals)
    • Nearest neighbor interpolation (1D and 2D signals)
    • Autocorrelation (1D signals)
    • Signal windowing
    • Text tokenization
    • Feature hashing
    • Feature standardization
    • One-hot encoding / decoding
    • Huffman coding / decoding
    • Term frequency-inverse document frequency (TF-IDF) encoding
    • MFCC encoding
  13. Utilities

    • Similarity kernels
    • Distance metrics
    • Priority queue
    • Ball tree
    • Discrete sampler
    • Graph processing and generators

Contributing

Am I missing your favorite model? Is there something that could be cleaner / less confusing? Did I mess something up? Submit a PR! The only requirement is that your models are written with just the Python standard library and NumPy. The SciPy library is also permitted under special circumstances ;)

See full contributing guidelines here.

About

Machine learning, in numpy

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%