Library of elastoplastic constitutive models for Abaqus software, including anisotropic yield criteria, isotropic and kinematic hardening laws, and uncoupled rupture criteria.
- Fortran compiler
Concatenate the UMMDp source files into one single file with the plug-in file first. Simply use the batch files (.sh/.bat) or run each command separately.
$ compile.sh
or
$ cp source/plug_ummdp_abaqus.f source/tmp.f
$ cat source/ummdp*.f >> source/tmp.f
$ mv source/tmp.f compiled/ummdp.f
> compile.bat
or
> copy "source\plug_ummdp_abaqus.f" "source\tmp.f"
> type "source\ummdp*.f" >> "source\tmp.f"
> move "source\tmp.f" "compiled\ummdp.f"
This section describes the keywords in Abaqus input data file for use in the UMMDp.
-
Definition of the principal axis for the material anisotropy (for more information, please refer to Abaqus's manual)
*ORIENTATION, NAME=ORI-1 1., 0., 0., 0., 1., 0. 3, 0.
-
Definition of the material model (more details are provided later)
*MATERIAL, NAME=UMMDp *USER MATERIAL, CONSTANTS=27 0, 0, 1000.0, 0.3, 2, -0.069, 0.936, 0.079, 1.003, 0.524, 1.363, 0.954, 1.023, 1.069, 0.981, 0.476, 0.575, 0.866, 1.145, -0.079, 1.404, 1.051, 1.147, 8.0, 0, 1.0, 0
-
Define the number of internal state variables (SDV)
Set the number of state variables equal to 1+NTENS, where NTENS is the number of components of the tensor variables. NTENS=3 for plane stress or a shell element, and NTENS=6 for a solid element. The 1st state variable is reserved for the equivalent plastic strain, and NTENS is reserved for the plastic strain components. The following ex- ample corresponds to a solid element without kinematic hardening:
*DEPVAR 7,
In the case of kinematic hardening, the number of internal state variables corresponds to the equivalent plastic strain, plastic strain components and components of each partial back-stress tensor.
-
Define the user output variables (UVARM)
UMMDp can output three user output variables:
-
UVARM(1): current equivalent stress (the value calculated by substituting the stress com- ponents for the yield function)
-
UVARM(2): current yield stress (the value calculated by substituting the equivalent plastic strain for the function of the isotropic hardening curve)
-
UVARM(3:8): current components of the total back-stress tensor
*USER OUTPUT VARIABLES 8,
-
-
Define output variables for post processing
This keyword controls the output variables (e.g. equivalent plastic strain and equiv- alent stress) for post processing.
*OUTPUT, FIELD *ELEMENT OUTPUT SDV, UVARM
To execute the program there are two options: 1. link the user subroutine in source code or 2. link the user subroutine previously compiled:
-
To execute the program with the user subroutine in source code, execute the command:
$> abaqus job=jobname user=ummdp.f
-
To execute the program with the user subroutine previously compiled, execute the commands:
> abaqus job=jobname user=ummdp.obj
$ abaqus job=jobname user=ummdp.o
To compile the file ummdp.obj/o use
$> abaqus make library=ummdp.f
- Error messages only
- Summary of multistage return mapping
- Detail of multistage return mapping and summary of Newton-Raphson
- Detail of Newton-Raphson
- Input/Output
- All status for debug and print
- Young's Modulus and Poisson's Ratio
- Bulk Modulus and Modulus of Rigidity
- von Mises (1913) ✔️
- Hill48 (1948) ✔️
- Yld2004-18p (2005) ✔️
- CPB (2006) ✔️
- Karafillis-Boyce (1993) ❔
- Hu (2005) ❔
- Yoshida 6th Polynomial (2011) ❔
- Gotoh Biquadratic (1978) ❔
- Yld2000-2d (2003) ✔️
- Vegter (2006) ❔
- BBC2005 (2005) ❔
- Yld89 (1989) ❔
- BBC2008 (2008) ❔
- Hill 1990 (1990) ❔
- Perfectly Plastic ✔️
- Linear Hardening ✔️
- Swift ✔️
- Ludwick ✔️
- Voce ✔️
- Voce + Linear ✔️
- Voce + Swift ✔️
- No Kinematic Hardening ✔️
- Prager (1949) ✔️
- Ziegler (1959) ✔️
- Armstrong-Frederick (1966) ✔️
- Chaboche (1979) ✔️
- Chaboche (1979) - Ziegler Type ✔️
- Yoshida-Uemori ❔
1 R. von Mises. 1913. Mechanik der festen Korper im plastisch deformablen Zustand. Gottin. Nachr. Math. Phys., 1: 582-592.
2 R. Hill. 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London, 193:281-297.
3 F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick. 2005. Linear transformation-based anisotropic yield functions. International Journal of Plasticity 21:1009-1039.
4 O. Cazacu, B. Plunkett, F. Barlat. 2006. Orthotropic yield criterion for hexagonal close packed metals. International Journal of Plasticity 22:1171-1194.
5 A.P. Karafillis, M.C. Boyce. 1993. A general anisotropic yield criterion using bounds and a transformation weighting tensor. Journal of the Mechanics of Physics and Solids 41:1859-1886.
6 W. Hu. 2005. An orthotropic yield criterion in a 3-D general stress state. International Journal of Plasticity 21:1771-1796.
7 F. Yoshida, H. Hamasaki, T. Uemori. 2013. A user-friendly 3D yield function to describe anisotropy of steel sheets. International Journal of Plasticity 45:119-139.
8 M. Gotoh. 1977. A theory of plastic anisotropy based on a yield function of fourth order (plane stress state) - I. International Journal of Mechanical Sciences 19-9:505-512.
9 F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu. 2003. Plane stress yield function for aluminium alloy sheets-part 1: theory. International Journal of Plasticity 19:1297-1319.
10 H. Vegter, A.H. van den Boogaard. 2006. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. International Journal of Plasticity 22:557-580.
11 D. Banabic, D.S. Aretz, H. Comsa, L. Paraianu. 2005. An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity 21:493-512.
12 F. Barlat, J. Lian. 1989. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity. 5:51-66.
13 D.S. Comsa, D. Banabic. 2008. Plane-stress yield criterion for highly-anisotropic sheet metals. Proceedings of NUMISHEET 2008.
14 R. Hill. 1990. Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the Mechanics and Physics of Solids.