-
Notifications
You must be signed in to change notification settings - Fork 101
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement EIT system performance measures. (#94)
* .ply reading * new figures of merit example * improvements to figures of merit * add convenience function for rendering * bugfix mesh plot * add tests for figures of merit * update render to keep image orientation * update mesh plot to allow mesh created with create function * figures of merit example for range of targets * EIT system analysis * adding drift calculation * add open EIT format * add option to calculate snr and detectability in decibels * add EIT system performance example * add colorbar function that matches height with corresponding image * make parse oeit return numpy array * read oeit reject non uniform lines * add allantools to environment.yml
- Loading branch information
Showing
9 changed files
with
858 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,4 +12,5 @@ dependencies: | |
- vispy | ||
- shapely | ||
- trimesh | ||
- "imageio>=2.19" | ||
- "imageio>=2.19" | ||
- allantools |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# coding: utf-8 | ||
from __future__ import absolute_import, division, print_function | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pyeit.eit.jac as jac | ||
import pyeit.mesh as mesh | ||
from pyeit.eit.fem import EITForward | ||
import pyeit.eit.protocol as protocol | ||
from pyeit.mesh.wrapper import PyEITAnomaly_Circle | ||
from pyeit.mesh.external import place_electrodes_equal_spacing | ||
from numpy.random import default_rng | ||
from pyeit.quality.eit_system import ( | ||
calc_signal_to_noise_ratio, | ||
calc_accuracy, | ||
calc_drift, | ||
calc_detectability, | ||
) | ||
from pyeit.eit.render import render_2d_mesh | ||
from pyeit.visual.plot import colorbar | ||
|
||
|
||
def main(): | ||
# Configuration | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
n_el = 16 | ||
render_resolution = (64, 64) | ||
background_value = 1 | ||
anomaly_value = 2 | ||
noise_magnitude = 2e-4 | ||
drift_rate = 2e-7 # Per frame | ||
|
||
n_background_measurements = 10 | ||
n_drift_measurements = 1800 | ||
measurement_frequency = 1 | ||
|
||
detectability_r = 0.5 | ||
distinguishability_r = 0.35 | ||
|
||
# Initialization | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
drift_period_hours = n_drift_measurements / (60 * 60 * measurement_frequency) | ||
conductive_target = True if anomaly_value - background_value > 0 else False | ||
det_center_range = np.arange(0, 0.667, 0.067) | ||
dist_distance_range = np.arange(0.35, 1.2, 0.09) | ||
rng = default_rng(0) | ||
|
||
# Problem setup | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
sim_mesh = mesh.create(n_el, h0=0.05) | ||
electrode_nodes = place_electrodes_equal_spacing(sim_mesh, n_electrodes=n_el) | ||
sim_mesh.el_pos = np.array(electrode_nodes) | ||
protocol_obj = protocol.create(n_el, dist_exc=1, step_meas=1, parser_meas="std") | ||
fwd = EITForward(sim_mesh, protocol_obj) | ||
|
||
recon_mesh = mesh.create(n_el, h0=0.1) | ||
electrode_nodes = place_electrodes_equal_spacing(recon_mesh, n_electrodes=n_el) | ||
recon_mesh.el_pos = np.array(electrode_nodes) | ||
eit = jac.JAC(recon_mesh, protocol_obj) | ||
eit.setup( | ||
p=0.5, lamb=0.03, method="kotre", perm=background_value, jac_normalized=True | ||
) | ||
|
||
# Simulate background | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
v0 = fwd.solve_eit(perm=background_value) | ||
d1 = np.array(range(n_drift_measurements)) * drift_rate # Create drift | ||
n1 = noise_magnitude * rng.standard_normal( | ||
(n_drift_measurements, len(v0)) | ||
) # Create noise | ||
|
||
v0_dn = np.tile(v0, (n_drift_measurements, 1)) + np.tile(d1, (len(v0), 1)).T + n1 | ||
|
||
# Calculate background performance measures | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
snr = calc_signal_to_noise_ratio(v0_dn[:n_background_measurements], method="db") | ||
accuracy = calc_accuracy(v0_dn[:n_background_measurements], v0, method="EIDORS") | ||
t2, adevs = calc_drift(v0_dn, method="Allan") | ||
|
||
drifts_delta = calc_drift(v0_dn, sample_period=10, method="Delta") | ||
start = np.average(v0_dn[0:10], axis=0) | ||
drifts_percent = 100 * drifts_delta / start | ||
|
||
# Simulate detectability test | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
detectabilities = [] | ||
detectability_renders = [] | ||
for c in det_center_range: | ||
anomaly = PyEITAnomaly_Circle( | ||
center=[c, 0], r=detectability_r, perm=anomaly_value | ||
) | ||
sim_mesh_new = mesh.set_perm( | ||
sim_mesh, anomaly=anomaly, background=background_value | ||
) | ||
v1 = fwd.solve_eit(perm=sim_mesh_new.perm) | ||
n = noise_magnitude * rng.standard_normal(len(v1)) | ||
v1_n = v1 + n | ||
ds = eit.solve(v1_n, v0_dn[0], normalize=True) | ||
solution = np.real(ds) | ||
image = render_2d_mesh(recon_mesh, solution, resolution=render_resolution) | ||
detectability = calc_detectability( | ||
image, conductive_target=conductive_target, method="db" | ||
) | ||
detectabilities.append(detectability) | ||
detectability_renders.append(image) | ||
|
||
# Simulate distinguishability test | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
anomaly = PyEITAnomaly_Circle(center=[0, 0], r=detectability_r, perm=anomaly_value) | ||
sim_mesh_new = mesh.set_perm(sim_mesh, anomaly=anomaly, background=background_value) | ||
dist_v0 = fwd.solve_eit(perm=sim_mesh_new.perm) | ||
dist_v0n = dist_v0 + noise_magnitude * rng.standard_normal(len(dist_v0)) | ||
|
||
distinguishabilities = [] | ||
distinguishabilitiy_renders = [] | ||
for d in dist_distance_range: | ||
a1 = PyEITAnomaly_Circle( | ||
center=[d / 2, 0], r=distinguishability_r, perm=anomaly_value | ||
) | ||
a2 = PyEITAnomaly_Circle( | ||
center=[-d / 2, 0], r=distinguishability_r, perm=anomaly_value | ||
) | ||
sim_mesh_new = mesh.set_perm( | ||
sim_mesh, anomaly=[a1, a2], background=background_value | ||
) | ||
v1 = fwd.solve_eit(perm=sim_mesh_new.perm) | ||
v1_n = v1 + noise_magnitude * rng.standard_normal(len(v1)) | ||
ds = eit.solve(v1_n, dist_v0n, normalize=True) | ||
solution = np.real(ds) | ||
image = render_2d_mesh(recon_mesh, solution, resolution=render_resolution) | ||
# Distinguishability is detectability but with a target as the background. | ||
distinguishability = calc_detectability( | ||
image, conductive_target=conductive_target, method="db" | ||
) | ||
distinguishabilities.append(distinguishability) | ||
distinguishabilitiy_renders.append(image) | ||
|
||
# Plot results | ||
# ------------------------------------------------------------------------------------------------------------------ | ||
fig, axs = plt.subplots(2, 2) | ||
|
||
axs[0, 0].plot(snr) | ||
axs[0, 0].set_xlabel("Channel Number") | ||
axs[0, 0].set_ylabel("Signal to Noise Ratio\n(dB)") | ||
axs[0, 0].title.set_text(f"Signal to Noise Ratio for {len(snr)} channels") | ||
|
||
axs[0, 1].plot(accuracy) | ||
axs[0, 1].set_xlabel("Channel Number") | ||
axs[0, 1].set_ylabel("Accuracy") | ||
axs[0, 1].title.set_text(f"Accuracy for {len(snr)} channels") | ||
|
||
axs[1, 0].set_xlabel("Averaging Window (s)") | ||
axs[1, 0].set_ylabel("Allan Deviation") | ||
axs[1, 0].title.set_text(f"Allan Deviation for {len(snr)} channels") | ||
for adev in adevs: | ||
axs[1, 0].plot(t2, adev) | ||
|
||
axs[1, 1].plot(drifts_percent) | ||
axs[1, 1].title.set_text( | ||
f"Drift percentage on all channels.\nDrift period (hours): {drift_period_hours}" | ||
) | ||
axs[1, 1].set_xlabel("Channel number") | ||
axs[1, 1].set_ylabel("Drift (% of starting value)") | ||
|
||
fig.tight_layout() | ||
fig.set_size_inches((10, 6)) | ||
|
||
fig, axs = plt.subplots(1, 2) | ||
axs[0].plot(det_center_range, detectabilities, ".-", label="-x axis") | ||
axs[0].legend() | ||
axs[0].set_xlabel("Target position (radius fraction)") | ||
axs[0].set_ylabel("Detectability (dB)") | ||
axs[0].title.set_text("Detectability vs radial position") | ||
|
||
axs[1].plot(dist_distance_range, distinguishabilities) | ||
axs[1].set_xlabel("Separation distance (radius fraction)") | ||
axs[1].set_ylabel("Distinguishability (dB)") | ||
axs[1].title.set_text("Distinguishability vs separation distance") | ||
|
||
fig.set_size_inches((10, 4)) | ||
fig.tight_layout() | ||
|
||
fig, axs = plt.subplots(1, len(det_center_range)) | ||
for i, c in enumerate(det_center_range): | ||
axs[i].imshow(detectability_renders[i]) | ||
axs[i].xaxis.set_ticks([]) | ||
axs[i].yaxis.set_ticks([]) | ||
|
||
fig.set_size_inches((14, 2)) | ||
fig.suptitle("Detectability Renders") | ||
fig.tight_layout() | ||
|
||
fig, axs = plt.subplots(1, len(dist_distance_range)) | ||
for i, d in enumerate(dist_distance_range): | ||
img = axs[i].imshow(distinguishabilitiy_renders[i]) | ||
axs[i].xaxis.set_ticks([]) | ||
axs[i].yaxis.set_ticks([]) | ||
colorbar(img) | ||
|
||
fig.set_size_inches((18, 2)) | ||
fig.suptitle("Distinguishability Renders") | ||
fig.tight_layout() | ||
plt.show() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import numpy as np | ||
from scipy import stats | ||
|
||
|
||
def load_oeit_data(file_name): | ||
with open(file_name, "r") as f: | ||
lines = f.readlines() | ||
|
||
data = [] | ||
for line in lines: | ||
eit = parse_oeit_line(line) | ||
if eit is not None: | ||
data.append(eit) | ||
|
||
mode_len = stats.mode([len(item) for item in data], keepdims=False) | ||
data = [item for item in data if len(item) == mode_len.mode] | ||
|
||
return np.array(data) | ||
|
||
|
||
def parse_oeit_line(line): | ||
try: | ||
_, data = line.split(":", 1) | ||
except (ValueError, AttributeError): | ||
return None | ||
items = [] | ||
for item in data.split(","): | ||
item = item.strip() | ||
if not item: | ||
continue | ||
try: | ||
items.append(float(item)) | ||
except ValueError: | ||
return None | ||
return np.array(items) |
Oops, something went wrong.