Skip to content

ekut-es/scope

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scope Dataset Website (Full Version available soon)

Scope-Logo

Here you can download the official Toolkit for the SCOPE dataset. The Toolkit provides functionality for an efficient parallel download, visualization and evaluation of Collective Perception Algorithms.

Toolkit

Installation

Use the package manager pip to install the Toolkit.

pip install scope-toolkit

Usage

Once installed, you can start using the Toolkit to enhance your workflow with the SCOPE dataset.

Download

The Toolkit allows efficient parallel downloading and extraction into the correct structure of the SCOPE dataset.

Simply run

cd ~/dataset-toolkit
python dataset-toolkit/TODO_ADD_PATH_TO/download_dataset.py

and follow the on-screen instructions.

Visualization

Visualization_Cam+LiDAR Visualization_45Top

The visualization module allows for an easy exploration of the dataset.

To visualize a scenario run

cd ~/dataset-toolkit
python dataset-toolkit/TODO_ADD_PATH_TO/visualize_sequence.py

and follow the on-screen instructions. This will create a GIF of the selected scenario while following the selected car in the given scenario.

Currently there are a few different perspectives implemented. Those are

    graph TD
        A{Viewpoint} -->|third-person/roof Camera+LiDAR| B(roof-option)
        A --> |bird's eye view 45° only LiDAR| C[GIF]
        B -->|front view| D(camera alignment)
        B -->|front to back| E(camera alignment)
        D --> |next to| F[GIF]
        D --> |above| G[GIF]
        E --> |next to| H[GIF]
        E --> |above| I[GIF]
Loading

Evaluation (TODO)

Evaluation module for easy and fair comparison of different methods using state-of-the-art metrics TODO

Data Structure

Our data structure optimises data management and analysis with unique features:

It separates environmental conditions, ensuring independent assessment of weather conditions. The hierarchical arrangement includes sensor data and transformation matrices per vehicle per scenario, enabling systematic management. Coordinate transformation is simplified with pre-existing matrices for each vehicle and sensor. In addition, support for common file formats such as .bin, .txt and .png ensures efficient data loading.

Data Structure

Ground Truth Format (.csv)

This section outlines the structure and contents of the ground truth data stored in a CSV (Comma-Separated Values) format. The table provides an overview of the fields present in the CSV file. Ground Truth Format

Each column is a separate field, such as the following

m_type << "," << m_id << "," << m_realworld_pos.x() << "," << m_realworld_pos.y() << "," << m_realworld_pos.z() << "," << m_realworld_dim.width <<...

The different types are

Type ID Description
0 BACKGROUND
1 CAR
2 VAN
3 TRUCK
4 PEDESTRIAN
5 PERSON_SITTING
6 CYCLIST
7 TRAM
8 MISC
9 MOTORBIKE

Citation

If you use our SCOPE dataset or the toolkit, please use the following citation

About

Repository for SCOPE Dataset Website

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •