Code for the Option-Critic Architecture. Original GitHub page: https://github.com/jeanharb/option_critic
This README is written for GTX 10 series GPU users.
First, install CUDA toolkit 8.0 and corresponding cuDNN library 5.1, then run:
apt-get install -y \
python-dev python-opencv python-tk python-numpy \
libopenblas-dev cmake zlib1g-dev zip
- Run
option_critic/scripts/setup/install.sh
You may need to edit the installation path of Pylean2
- Defined as
PYLEARN2_INSTALL_PATH
inoption_critic/scripts/_common/set_common_variables.sh
.
We also provide docker images, which make things easier:
- Run
docker pull elsaresearchlab/option_critic
- See scripts under
option_critic/scripts/train
cd /path/to/this/repo # change to this repo
mkdir roms # create a directory to place the roms for training
mv /.../seaquest.bin ./roms # placing atari rom(s)
export NAME=500k # identify the exp.
export ENV_ID=seaquest # specify atari env
export EPOCHS=2 # 250k step/epoch
export SEED=1000 # random seed
bash option_critic/scripts/train/run.sh
docker run -it --rm -d \
--name seaquest-seed-1000 \
--gpus '"device=0"' \
--env SEED=1000 \
--env NAME=500k \
--env ENV_ID=seaquest \
--env EPOCHS=2 \
-v ~/zips:/opt/option_critic/zips \
elsaresearchlab/option_critic \
bash option_critic/scripts/train/run.sh
To watch model after training, run:
python option_critic/run_best_model.py models/.../last_model.pkl
See Environment Info.md
for detail environment info on a working machine.