Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typo #3755

Merged
merged 1 commit into from
Jan 11, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/pages/overview.adoc
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Embassy is a project to make async/await a first-class option for embedded devel

When handling I/O, software must call functions that block program execution until the I/O operation completes. When running inside of an OS such as Linux, such functions generally transfer control to the kernel so that another task (known as a “thread”) can be executed if available, or the CPU can be put to sleep until another task is ready.

Because an OS cannot presume that threads will behave cooperatively, threads are relatively resource-intensive, and may be forcibly interrupted they do not transfer control back to the kernel within an allotted time. If tasks could be presumed to behave cooperatively, or at least not maliciously, it would be possible to create tasks that appear to be almost free when compared to a traditional OS thread.
Because an OS cannot presume that threads will behave cooperatively, threads are relatively resource-intensive, and may be forcibly interrupted if they do not transfer control back to the kernel within an allotted time. If tasks could be presumed to behave cooperatively, or at least not maliciously, it would be possible to create tasks that appear to be almost free when compared to a traditional OS thread.

In other programming languages, these lightweight tasks are known as “coroutines” or ”goroutines”. In Rust, they are implemented with async. Async-await works by transforming each async function into an object called a future. When a future blocks on I/O the future yields, and the scheduler, called an executor, can select a different future to execute.

Expand Down
Loading