Skip to content

Commit

Permalink
Compute cross-correlation matrices without matrix inversion
Browse files Browse the repository at this point in the history
  • Loading branch information
Blunde1 committed Oct 18, 2023
1 parent c8fa508 commit 854436b
Showing 1 changed file with 7 additions and 9 deletions.
16 changes: 7 additions & 9 deletions src/ert/analysis/_es_update.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,11 +444,10 @@ def analysis_ES(
temp_storage = _create_temporary_parameter_storage(
source, iens_active_index, param_group.name
)

if module.localization():
Y_prime = S - S.mean(axis=1, keepdims=True)
C_YY = Y_prime @ Y_prime.T / (ensemble_size - 1)
Sigma_Y = np.diag(np.sqrt(np.diag(C_YY)))
Sigma_Y = np.std(S, axis=1, ddof=1)
batch_size: int = 1000
correlation_threshold = module.localization_correlation_threshold(
ensemble_size
Expand All @@ -465,17 +464,16 @@ def analysis_ES(
batches = _split_by_batchsize(np.arange(0, num_params), batch_size)
for param_batch_idx in tqdm(batches):
X_local = temp_storage[param_group.name][param_batch_idx, :]
# Parameter standard deviations
Sigma_A = np.std(X_local, axis=1, ddof=1)
# Cross-covariance between parameters and measurements
A = X_local - X_local.mean(axis=1, keepdims=True)
C_AA = A @ A.T / (ensemble_size - 1)

# State-measurement covariance matrix
C_AY = A @ Y_prime.T / (ensemble_size - 1)
Sigma_A = np.diag(np.sqrt(np.diag(C_AA)))

# State-measurement correlation matrix
# Cross-correlation between parameters and measurements
c_AY = np.abs(
np.linalg.inv(Sigma_A) @ C_AY @ np.linalg.inv(Sigma_Y)
(C_AY / Sigma_Y.reshape(1, -1)) / Sigma_A.reshape(-1, 1)
)
# Absolute values of the correlation matrix
c_bool = c_AY > correlation_threshold
# Some parameters might be significantly correlated
# to the exact same responses.
Expand Down

0 comments on commit 854436b

Please sign in to comment.