-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_fusion.py
140 lines (116 loc) · 5.15 KB
/
train_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
import numpy as np
import os
import argparse
import time, datetime
import matplotlib; matplotlib.use('Agg')
from src import config, data
from src.checkpoints import CheckpointIO
import shutil
from src import layers
# Arguments
parser = argparse.ArgumentParser(
description='Train a 3D reconstruction model.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no_cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--exit-after', type=int, default=-1,
help='Checkpoint and exit after specified number of seconds'
'with exit code 2.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Set t0
t0 = time.time()
# Shorthands
out_dir = cfg['training']['out_dir']
batch_size = cfg['training']['batch_size']
backup_every = cfg['training']['backup_every']
vis_n_outputs = cfg['generation']['vis_n_outputs']
exit_after = args.exit_after
model_selection_metric = cfg['training']['model_selection_metric']
if cfg['training']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['training']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be '
'either maximize or minimize.')
# Output directory
if not os.path.exists(out_dir):
os.makedirs(out_dir)
shutil.copyfile(args.config, os.path.join(out_dir, 'config.yaml'))
# Dataset
train_dataset = config.get_dataset('train', cfg)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=cfg['training']['batch_size'], num_workers=cfg['training']['n_workers'], shuffle=False,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
# Model
model, input_crop_size, query_crop_size, grid_reso = config.get_model(cfg, device=device, dataset=train_dataset)
# Model for merging
model_merging = layers.Conv3D_one_input().to(device)
if model_merging is not None:
# Freeze ConvONet parameters
for parameter in model.parameters():
parameter.requires_grad = False
optimizer = optim.Adam(list(model.parameters()) + list(model_merging.parameters()), lr=1e-4)
trainer = config.get_trainer_sequence(model, model_merging, optimizer, cfg, device=device)
else:
optimizer = optim.Adam(model.parameters(), lr=1e-4)
trainer = config.get_trainer(model, optimizer, cfg, device=device)
checkpoint_io = CheckpointIO(out_dir, model=model)
checkpoint_io_merging = CheckpointIO(out_dir, model=model_merging, optimizer = optimizer)
try:
checkpoint_io.load(os.path.join(os.getcwd(), cfg['training']['backbone_file']))
load_dict = checkpoint_io_merging.load('model_merging.pt')
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', 0)
it = load_dict.get('it', -1)
metric_val_best = load_dict.get(
'loss_val_best', -model_selection_sign * np.inf)
if metric_val_best == np.inf or metric_val_best == -np.inf:
metric_val_best = -model_selection_sign * np.inf
print('Current best validation metric (%s): %.8f'
% (model_selection_metric, metric_val_best))
logger = SummaryWriter(os.path.join(out_dir, 'logs'))
# Shorthands
print_every = cfg['training']['print_every']
checkpoint_every = cfg['training']['checkpoint_every']
# Print model
nparameters = sum(p.numel() for p in model.parameters())
nparameters_merging = sum(p.numel() for p in model_merging.parameters())
print('Total number of parameters: %d' % nparameters)
print('Total number of parameters in merging model: %d' % nparameters_merging)
print('output path: ', cfg['training']['out_dir'])
while True:
epoch_it += 1
for batch in train_loader:
it += 1
loss = trainer.train_sequence_window(batch, input_crop_size, query_crop_size, grid_reso, window=cfg['training']['batch_size'])
logger.add_scalar('train/loss', loss, it)
# Print output
if print_every > 0 and (it % print_every) == 0:
t = datetime.datetime.now()
print('[Epoch %02d] it=%03d, loss=%.4f, time: %.2fs, %02d:%02d'
% (epoch_it, it, loss, time.time() - t0, t.hour, t.minute))
# Save checkpoint
if (checkpoint_every > 0 and (it % checkpoint_every) == 0):
print('Saving checkpoint')
checkpoint_io_merging.save('model_merging.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Backup if necessary
if (backup_every > 0 and (it % backup_every) == 0):
print('Backup checkpoint')
checkpoint_io_merging.save('model_merging_%d.pt' % it, epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Exit if necessary
if exit_after > 0 and (time.time() - t0) >= exit_after:
print('Time limit reached. Exiting.')
checkpoint_io_merging.save('model_merging.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(3)