-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
1,101 additions
and
270 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
import pickle | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import glob | ||
from radar_plot import ComplexRadar | ||
|
||
low_balanced = [11, 11] | ||
low_unbalanced = [11, 6] | ||
|
||
medium_balanced = [22, 22] | ||
medium_unbalanced = [22, 11] | ||
|
||
high_balanced = [32, 32] | ||
high_unbalanced = [32, 16] | ||
|
||
|
||
# traffic_conditions = [low_balanced, low_unbalanced, medium_balanced, medium_unbalanced, high_balanced, high_unbalanced] | ||
|
||
traffic_dict = {('low', 'balanced'): [11,11], | ||
('low', 'unbalanced'): [11,6], | ||
('medium', 'balanced'): [22,22], | ||
('medium', 'unbalanced'): [22,11], | ||
('high', 'balanced'): [32,32], | ||
('high', 'unbalanced'): [32,16], | ||
} | ||
|
||
pref_types = ['speed', 'stops', 'wait'] | ||
|
||
vote_speed = [1.0, 0.0, 0.0] | ||
vote_stops = [0.0, 1.0, 0.0] | ||
vote_wait = [0.0, 0.0, 1.0] | ||
|
||
vote_uniform_1 = [0.5, 0.5, 0.0] | ||
vote_uniform_2 = [0.5, 0.0, 0.5] | ||
vote_uniform_3 = [0.0, 0.5, 0.5] | ||
|
||
vote_quarter_1 = [0.75, 0.25, 0.0] | ||
vote_quarter_2 = [0.75, 0.0, 0.25] | ||
vote_quarter_3 = [0.25, 0.0, 0.75] | ||
vote_quarter_4 = [0.0, 0.25, 0.75] | ||
vote_quarter_5 = [0.25, 0.75, 0.0] | ||
vote_quarter_6 = [0.0, 0.75, 0.25] | ||
|
||
# vote_types = [vote_speed, vote_stops, vote_wait, vote_uniform_1, vote_uniform_2, vote_uniform_3]#, vote_quarter_1, vote_quarter_2, vote_quarter_3, vote_quarter_4, vote_quarter_5, vote_quarter_6] | ||
|
||
# vote_types = [vote_uniform_1, vote_uniform_2, vote_uniform_3] | ||
vote_types = [vote_stops, vote_wait, vote_uniform_3] | ||
|
||
categories = ['Speed', 'Number of Stops', 'Wait Time'] | ||
categories = [*categories, categories[0]] | ||
vote_types = [vote_uniform_3, ['both']] | ||
|
||
|
||
# all_data = {} | ||
# all_names = {} | ||
|
||
# for j, (label, traffic) in enumerate(traffic_dict.items()): | ||
# data = [] | ||
# names = [] | ||
# for folder in ['proportional_100','both_lin_combo_test', 'both_cobb_doug_test']: | ||
# if 'both' in folder: | ||
# vote = ['both'] | ||
# else: | ||
# vote = vote_uniform_3 | ||
# avg_total_waits = [] | ||
# avg_total_stops = [] | ||
# avg_total_speeds = [] | ||
|
||
|
||
# _path = f"../{folder}/{'_'.join(map(str,traffic))}_{'_'.join(map(str,vote))}" | ||
|
||
# # for trial, path in enumerate([_path]): | ||
# for trial, path in enumerate(glob.glob(f'{_path}*')): | ||
# print('globbing', path) | ||
# speeds_path = path + "/veh_speed_hist.pickle" | ||
# stops_path = path + "/veh_stops.pickle" | ||
# wait_path = path + "/veh_wait_time.pickle" | ||
|
||
# with open(speeds_path, "rb") as f: | ||
# speeds = pickle.load(f) | ||
|
||
# avg_speed = np.mean([np.mean(speeds[x]) for x in speeds.keys()]) | ||
# var_speed = np.std(([np.mean(speeds[x]) for x in speeds.keys()])) | ||
|
||
# with open(stops_path, "rb") as f: | ||
# stops = pickle.load(f) | ||
|
||
# avg_stops = np.mean([np.mean(stops[x]) for x in stops.keys()]) | ||
# var_stops = np.std(([np.mean(stops[x]) for x in stops.keys()])) | ||
|
||
# with open(wait_path, "rb") as f: | ||
# wait = pickle.load(f) | ||
|
||
# wait = {k:v if v else [0] for k,v in wait.items()} | ||
|
||
# avg_wait = np.mean([np.mean(wait[x]) for x in wait.keys()]) | ||
# var_wait = np.std(([np.mean(wait[x]) for x in wait.keys()])) | ||
|
||
# avg_total_waits.append(avg_wait) | ||
# avg_total_stops.append(avg_stops) | ||
# avg_total_speeds.append(avg_speed) | ||
|
||
# result = [np.mean(avg_total_speeds), np.mean(avg_total_stops), np.mean(avg_total_waits)] | ||
# result = [*result, result[0]] | ||
# data.append(result) | ||
|
||
# if vote == vote_uniform_3: | ||
# name = "Prop S+W" | ||
# elif vote == ['both']: | ||
# if folder == 'both_lin_combo_test': | ||
# name = "Linear comb." | ||
# elif folder == 'both_cobb_doug_test': | ||
# name = "Cobb Doug" | ||
|
||
# names.append(name) | ||
|
||
|
||
# key = f"{'_'.join(map(str,traffic))}" | ||
# all_data.update({key:data}) | ||
# all_names.update({key:names}) | ||
|
||
# variables = ('Speed', 'Stops', 'Wait Time') | ||
# ranges = [(0, max([x[0] for x in data])), (max([x[1] for x in data]), 0), (max([x[2] for x in data]), 0)] | ||
# # plotting | ||
|
||
|
||
|
||
# data = {'all_data': all_data, | ||
# 'all_names': all_names} | ||
|
||
# with open('data.pickle', 'wb') as f: | ||
# pickle.dump(data, f) | ||
|
||
with open('data.pickle', "rb") as f: | ||
data = pickle.load(f) | ||
all_data = data['all_data'] | ||
all_names = data['all_names'] | ||
|
||
plt.rcParams.update({'font.size': 12}) | ||
b1,b2, b3 = 0,0,0 | ||
|
||
for label, traffic in traffic_dict.items(): | ||
|
||
_labels = [f"{'_'.join(map(str,traffic))}"] | ||
|
||
b1 = max(b1, max([x[0] for ll in _labels for x in all_data[ll] ])) | ||
b2 = max(b2, max([x[1] for ll in _labels for x in all_data[ll] ])) | ||
b3 = max(b3, max([x[2] for ll in _labels for x in all_data[ll] ])) | ||
ranges = [(0, b1), | ||
(b2, 0), | ||
(b3, 0)] | ||
|
||
# for key, data in all_data.items(): | ||
for label, traffic in traffic_dict.items(): | ||
_labels = f"{'_'.join(map(str,traffic))}" | ||
|
||
fig1, axes = plt.subplots(1,1, subplot_kw={'projection':'polar'}) | ||
|
||
# for name in ["Prop S+W", "Linear comb.", "Cobb Doug"]: | ||
key = f"{'_'.join(map(str,traffic))}" | ||
data = all_data[key] | ||
names = all_names[key] | ||
|
||
b1 = max([x[0] for x in data ]) | ||
b2 = max([x[1] for x in data ]) | ||
b3 = max([x[2] for x in data ]) | ||
ranges = [(0, b1), | ||
(b2, 0), | ||
(b3, 0)] | ||
|
||
save_name = f"../figs/{'_'.join(map(str,traffic))}_appendix.pdf" | ||
print(save_name, ranges) | ||
print(data) | ||
# save_name = f"../figs/figure1.pdf" | ||
|
||
|
||
variables = ('Speed', 'Stops', 'Wait Time') | ||
radar = ComplexRadar(axes, variables, ranges) | ||
|
||
for d, name in zip(data, names): | ||
radar.plot(d, label=name) | ||
radar.fill(d, alpha=0.2) | ||
|
||
fig1.legend() | ||
|
||
# if traffic[0] == 11: | ||
# if traffic[1] == 11: | ||
# axes.set_title("Low Balanced") | ||
# else: | ||
# axes.set_title("Low Unbalanced") | ||
# elif traffic[0] == 22: | ||
# if traffic[1] == 22: | ||
# axes.set_title("Medium Balanced") | ||
# else: | ||
# axes.set_title("Medium Unbalanced") | ||
# elif traffic[0] == 32: | ||
# if traffic[1] == 32: | ||
# axes.set_title("High Balanced") | ||
# else: | ||
# axes.set_title("High Unbalanced") | ||
axes.set_title(' '.join(label)) | ||
|
||
|
||
fig1.savefig(save_name, format='pdf', bbox_inches='tight') | ||
|
||
##################### | ||
|
||
|
||
# fig1, axes = plt.subplots(1,1, subplot_kw={'projection':'polar'}) | ||
|
||
# radar = ComplexRadar(axes, variables, ranges) | ||
|
||
# for d, name in zip(data, names): | ||
# radar.plot(d, label=name) | ||
|
||
# radar.fill(d, alpha=0.2) | ||
|
||
|
||
# save_name = f"../figs/{traffic[0]}_{traffic[1]}.pdf" | ||
# # save_name = f"../figs/figure1.pdf" | ||
# fig1.legend() | ||
|
||
# if traffic[0] == 11: | ||
# if traffic[1] == 11: | ||
# axes.set_title("Low Balanced") | ||
# else: | ||
# axes.set_title("Low Unbalanced") | ||
# elif traffic[0] == 22: | ||
# if traffic[1] == 22: | ||
# axes.set_title("Medium Balanced") | ||
# else: | ||
# axes.set_title("Medium Unbalanced") | ||
# elif traffic[0] == 32: | ||
# if traffic[1] == 32: | ||
# axes.set_title("High Balanced") | ||
# else: | ||
# axes.set_title("High Unbalanced") | ||
|
||
|
||
|
||
# fig1.savefig(save_name, format='pdf', bbox_inches='tight') | ||
|
||
|
Oops, something went wrong.