-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
80 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
from pyspark.sql import SparkSession | ||
from pyspark.sql.types import * | ||
from pyspark.sql.window import Window | ||
from pyspark.sql.functions import col, unix_timestamp, lag, when, sha2, concat_ws, sum as spark_sum | ||
|
||
|
||
def load_data(ss, path, schema, from_file): | ||
if from_file: | ||
return spark.read.option("header", "true").schema(schema).csv(path) | ||
else: | ||
raise ValueError("load_data_error") | ||
|
||
|
||
def pre_processing_data(ss, raw_data_path, prev_data_path, schema, session_timeout): | ||
|
||
raw_data = load_data(ss, raw_data_path, schema, from_file) | ||
prev_data = load_data(ss, prev_data_path, schema, from_file) | ||
|
||
# 데이터 병합 및 날짜 타입 변경 | ||
df = raw_data.unionAll(prev_data) | ||
df = df.withColumn("event_time", col("event_time").cast("timestamp")) | ||
|
||
return df | ||
|
||
|
||
def assign_session_id(df, session_timeout): | ||
|
||
window_spec = Window.partitionBy("user_id").orderBy("event_time") | ||
|
||
# 필요 컬럼 생성 | ||
# new_session : 새로운 세션 발생 여부 | ||
# session_number : window 함수를 통해 new_session 컬럼을 누적하며 session_id 구분 로직 구현 | ||
# session_id : sha 함수를 통한 최종 session_id | ||
df = df \ | ||
.withColumn("prev_event_time", | ||
lag("event_time").over(window_spec)) \ | ||
.withColumn("time_diff", | ||
unix_timestamp("event_time") - unix_timestamp("prev_event_time")) \ | ||
.withColumn("new_session", | ||
when(col("time_diff") > session_timeout, 1).otherwise(0)) \ | ||
.withColumn("session_number", | ||
spark_sum("new_session").over(window_spec.rowsBetween(Window.unboundedPreceding, 0))) \ | ||
.withColumn("session_id", | ||
sha2(concat_ws("_", col("user_id"), col("session_number")), 256)) | ||
|
||
return df | ||
|
||
|
||
if __name__ == "__main__": | ||
spark = SparkSession.builder \ | ||
.master("local") \ | ||
.appName("Sessionization") \ | ||
.getOrCreate() | ||
|
||
# 데이터 스키마 정의 | ||
schema = StructType([ | ||
StructField("event_time", StringType(), False), | ||
StructField("event_type", StringType(), False), | ||
StructField("product_id", StringType(), False), | ||
StructField("category_id", StringType(), False), | ||
StructField("category_code", StringType(), False), | ||
StructField("brand", StringType(), False), | ||
StructField("price", StringType(), False), | ||
StructField("user_id", StringType(), False) | ||
]) | ||
|
||
# 데이터 경로 | ||
from_file = True | ||
path = "/Users/doyeonpyun/Downloads/input_data/year=2019/month=10/day=10/hour=4/*.csv" # 동적으로 변경 예정 | ||
prev_path = "/Users/doyeonpyun/Downloads/input_data/year=2019/month=10/day=10/hour=5/*.csv" # 동적으로 변경 예정 | ||
|
||
# 세션 초과 기준 | ||
session_timeout = 1800 # 30분 | ||
|
||
# 데이터 처리 | ||
result_df = pre_processing_data(spark, path, prev_path, schema, session_timeout) | ||
final_df = assign_session_id(result_df, session_timeout) | ||
|
||
# 결과 확인 | ||
final_df.select('event_time','user_id','prev_event_time','time_diff','session_id').show(truncate=False,n = 1000) |
Empty file.