Skip to content

MPM-Geomechanics is a program that allows us to model the behavior of geo-materials, like soil and rock, when these materials are subjected to extreme conditions.

Notifications You must be signed in to change notification settings

fabricix/MPM-Geomechanics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MPM-Geomechanics

A material point method code for geomechanics

CI MSBuild

Documentation

See the documentation at MPM-Geomechanics.

Motivation

MPM-Geomechanics is a program that allows us to model the behavior of geo-materials, like soil and rock, when these materials are subjected to different initial and boundary conditions. Currently, the geo-materials are present in several areas of the society, like for example in the slopes and excavation process in mining industry activities, or in the study of risk associated to naturals disasters.

The objective of this repository is to provide a platform for developing the MPM for the study of geomechanical problems involving large deformations and distortions.

Collaboration

If you are interested to collaborate with this project, please contact to fabricio.fernandez@ucn.cl. There are several topics for developing in this project, here there are a few of them:

Program features

The main features of the program in the actuality are:

  • Three-dimensional formulation (can simulated 2D plane strain problems too)
  • Dynamic formulation (suitable for earthquake and general dynamic problems)
  • Shared memory parallelization (for computational time reduction)
  • Several constitutive models for soils and rock, including softening and hardening options.

Compiled binaries

  1. Go to the Actions page.
  2. Select the latest run of the MSBuild workflow for Window, or CI for Linux.
  3. At the bottom, you will find the available artifacts under the Artifacts section.
  4. Download the compiled-binaries artifact to get the compiled code.

Documentation and Compilation

For generating documentation and compilation of the code please see the documentation at MPM-Geomechanics.

Examples

Slope failure

In this example an soil slope failure is simulated using an elastoplastic material:

For more details of this simulation see the input file slope-failure.json

Exponential softening model to simulate fracturing process in rock

In this example an elastoplastic body impacts over an elastic body. The fracturing process in rock masses is captured using an exponential strain softening over tensile strength in the elastoplastic material: $\sigma^t(\epsilon_p^{pleff}) = \sigma^t_{final}-(\sigma^t_{initial}-\sigma^t_{final})e^{-\eta \epsilon_p^{pleff}}$, where $\eta$ is the shape factor and $\epsilon_p^{pleff}=\sqrt{2/3\epsilon_{pij}^{pl}\epsilon_{pij}^{pl}}$ is the effective plastic strain.

Example 1:

Fracturing induced by exponential softening over the tensile strength. The yellow body is subjected to an initial velocity. The withe body is elastic.

An elasto-plastic body impacts over an elastic body. The exponential softening used over the tensile strength, in order to reproduce the fracturing process in the body.

See exponential-softening.json input file for simulation details.

Example 2

In this example is tested the refinement mesh behavior. The fixed (left-bottom) and free boundary (right-up) conditions are tested too.

See exponential-softening-refined.json input file for simulation details.

Base acceleration

In this example the model base is setting up to vibrate with an acceleration and velocity record. The input velocity and acceleration used is:

The response of the model is:

See the input file of this model in vibrational-base.json

About

MPM-Geomechanics is a program that allows us to model the behavior of geo-materials, like soil and rock, when these materials are subjected to extreme conditions.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages