Skip to content

fair-search/fairsearch-fair-for-elasticsearch

Repository files navigation

Fair search algorithms for Elasticsearch

Build Status Maintainability

The Fair Search Elasticsearch plugin uses machine learning to provide a fair search result with relevant protected and non protected classes.

What this plugin does...

This plugin:

  • Store fairness distribution tables to be used during rescoring.
  • Allows you to rescore fairly any query in Еlasticsearch.

Where's the docs?

We recommend taking time to read the docs.

How to contribute?

This plugin is an open source project and we love to receive contributions from the community — you! All contributions are welcome: ideas, patches, documentation, bug reports, complaints, and even something you drew up on a napkin.

Programming is not a required skill. Whatever you've seen about open source and maintainers or community members saying "send patches or die" - you will not see that here.

It is more important to me that you are able to contribute.

Extra bits at CONTRIBUTING.md

Installing

Install Elasticsearch and the FA*IR plugin

First download the zip-file of Elasticsearch Version 6.2.4. Extract and go to directory elasticsearch-6.2.4

Within this folder run the following command to install the fairsearch plugin:

./bin/elasticsearch-plugin install https://fair-search.github.io/fair-reranker/fairsearch-1.0-es6.2.4-snapshot.zip (It's expected you'll confirm some security exceptions, you can pass -b to elasticsearch-plugin to automatically install).

If you have made changes to the plugin you can run

./gradlew clean check

and then install your build with the following command

./bin/elasticsearch-plugin install file:///path/to/project/build/distributions/fairsearch-1.0-es6.2.4-snapshot.zip

See the full list of prebuilt versions. If you don't see a version available, see the link below for building.

Development

Notes if you want to dig into the code or build for a version there's no build for.

1. Build with Gradle Wrapper

./gradlew clean check

This runs the tasks in the esplugin gradle plugin that builds, tests, generates a Elasticsearch plugin zip file.

How to use the Plugin

Once you have a running Elasticsearch node with the fairsearch plugin installed you can perform search queries and get the results in a fair ordering according to the FA*IR: A Fair Top-k Ranking Algorithm.

Get a Fair Ranking

In order to use the plugin we need to make a Elasticsearch query with a re-scorer. Here is a sample query:

POST http://yourESNodeAdress/indexName/_search

{
	"from" : 0, "size" : 25,
	"query" : {
		"match" : {
			"body" : "hello"
			}
		},
	"rescore" : {
		"window_size" : 25,
		"fair_rescorer" : {
			"protected_key" : "gender",
			"protected_value" : "f",
			"significance_level" : 0.1,
			"min_proportion_protected" : 0.5
			}
		}
}

The parameters used in the query are the following:

  • size/window_size is the length of the (re)ranking
  • min_proportion_protected is the desired proportion of candidates with a protected attribute
  • significance_level is the significance level
  • protected_key specifies which attribute of the store document keeps the key which divides the documents in to protected or not protected
  • protected_value specifies the value in the protected_key which tells when a document is protected

We recommend reading FA*IR: A Fair Top-k Ranking Algorithm in order to understand why we need these parameters.

Manually create a MTable

An M table is a representation for a fair ranking. The plugin also allows us to create a M table manually with following call:

POST http://yourESNodeAdress/_fs/_mtable/0.5/0.1/25

The M table is now stored in your Elasticsearch node. To get a list of all M tables in your node you can make the following request:

GET http://yourESNodeAdress/_fs/_mtable

Credits

The FA*IR algorithm is described on this paper:

  • Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, Ricardo Baeza-Yates: "FA*IR: A Fair Top-k Ranking Algorithm". Proc. of the 2017 ACM on Conference on Information and Knowledge Management (CIKM).

The plugin was developed based on the paper by:

See the license

For any questions contact Meike Zehlike

See also

Releases

No releases published

Packages

No packages published

Languages