-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2f9f6ca
commit 3c3c90b
Showing
5 changed files
with
182 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .tree import MCTS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .mcts import MCTS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import random | ||
import math | ||
import hashlib | ||
import argparse | ||
from abc import ABC, abstractmethod | ||
|
||
# from ... import logger | ||
import logging | ||
logging.basicConfig(level=logging.WARNING) | ||
logger = logging.getLogger('MyLogger') | ||
|
||
SCALAR=1/(2*math.sqrt(2.0)) | ||
|
||
class MCTSState(ABC): | ||
MOVES=[] | ||
num_moves=len(MOVES) | ||
def __init__(self): | ||
... | ||
|
||
def next_state(self): | ||
... | ||
|
||
def terminal(self): | ||
... | ||
|
||
def reward(self): | ||
... | ||
|
||
def __hash__(self): | ||
... | ||
|
||
def __eq__(self,other): | ||
... | ||
|
||
def __repr__(self): | ||
... | ||
|
||
class MCTSNode: | ||
def __init__(self, state, parent=None): | ||
self.visits=1 | ||
self.reward=0.0 | ||
self.state=state | ||
self.children=[] | ||
self.parent=parent | ||
def add_child(self,child_state): | ||
child=MCTSNode(child_state,self) | ||
self.children.append(child) | ||
def update(self,reward): | ||
self.reward+=reward | ||
self.visits+=1 | ||
def fully_expanded(self, num_moves_lambda): | ||
num_moves = self.state.num_moves | ||
if num_moves_lambda is not None: | ||
num_moves = num_moves_lambda(self) | ||
if len(self.children)==num_moves: | ||
return True | ||
return False | ||
def __repr__(self): | ||
s="Node; children: %d; visits: %d; reward: %f"%(len(self.children),self.visits,self.reward) | ||
return s | ||
|
||
class MCTS: | ||
@classmethod | ||
def UCTSearch(cls, budget, root, num_moves_lambda = None): | ||
for iter in range(int(budget)): | ||
if iter%10000==9999: | ||
logger.info("simulation: %d"%iter) | ||
logger.info(root) | ||
front=cls.tree_policy(root, num_moves_lambda) | ||
reward=cls.default_policy(front.state) | ||
cls.backup(front,reward) | ||
return cls.best_child(root,0) | ||
|
||
@classmethod | ||
def tree_policy(cls, node, num_moves_lambda): | ||
#a hack to force 'exploitation' in a game where there are many options, and you may never/not want to fully expand first | ||
while not node.state.terminal(): | ||
if len(node.children)==0: | ||
return cls.expand(node) | ||
elif random.uniform(0,1)<.5: | ||
node=cls.best_child(node,SCALAR) | ||
else: | ||
if not node.fully_expanded(num_moves_lambda): | ||
return cls.expand(node) | ||
else: | ||
node=cls.best_child(node,SCALAR) | ||
return node | ||
|
||
@staticmethod | ||
def expand(node): | ||
tried_children=[c.state for c in node.children] | ||
new_state=node.state.next_state() | ||
while new_state in tried_children and not new_state.terminal(): | ||
new_state=node.state.next_state() | ||
node.add_child(new_state) | ||
return node.children[-1] | ||
|
||
#current this uses the most vanilla MCTS formula it is worth experimenting with THRESHOLD ASCENT (TAGS) | ||
@staticmethod | ||
def best_child(node,scalar): | ||
bestscore=0.0 | ||
bestchildren=[] | ||
for c in node.children: | ||
exploit=c.reward/c.visits | ||
explore=math.sqrt(2.0*math.log(node.visits)/float(c.visits)) | ||
score=exploit+scalar*explore | ||
if score==bestscore: | ||
bestchildren.append(c) | ||
if score>bestscore: | ||
bestchildren=[c] | ||
bestscore=score | ||
if len(bestchildren)==0: | ||
logger.warn("OOPS: no best child found, probably fatal") | ||
return random.choice(bestchildren) if bestchildren != [] else None | ||
|
||
@staticmethod | ||
def default_policy(state): | ||
while state.terminal()==False: | ||
state=state.next_state() | ||
return state.reward() | ||
|
||
@staticmethod | ||
def backup(node,reward): | ||
while node!=None: | ||
node.visits+=1 | ||
node.reward+=reward | ||
node=node.parent | ||
return None | ||
|
||
if __name__=="__main__": | ||
class TESTState(MCTSState): | ||
NUM_TURNS = 10 | ||
GOAL = 0 | ||
MOVES=[2,-2,3,-3] | ||
MAX_VALUE= (5.0*(NUM_TURNS-1)*NUM_TURNS)/2 | ||
num_moves=len(MOVES) | ||
def __init__(self, value=0, moves=[], turn=NUM_TURNS): | ||
self.value=value | ||
self.turn=turn | ||
self.moves=moves | ||
def next_state(self): | ||
nextmove=random.choice([x*self.turn for x in self.MOVES]) | ||
next=TESTState(self.value+nextmove, self.moves+[nextmove],self.turn-1) | ||
return next | ||
def terminal(self): | ||
if self.turn == 0: | ||
return True | ||
return False | ||
def reward(self): | ||
r = 1.0-(abs(self.value-self.GOAL)/self.MAX_VALUE) | ||
return r | ||
def __hash__(self): | ||
return int(hashlib.md5(str(self.moves).encode('utf-8')).hexdigest(),16) | ||
def __eq__(self,other): | ||
if hash(self)==hash(other): | ||
return True | ||
return False | ||
def __repr__(self): | ||
s="Value: %d; Moves: %s"%(self.value,self.moves) | ||
return s | ||
|
||
parser = argparse.ArgumentParser(description='MCTS research code') | ||
parser.add_argument('--num_sims', action="store", required=True, type=int) | ||
parser.add_argument('--levels', action="store", required=True, type=int, choices=range(TESTState.NUM_TURNS+1)) | ||
args=parser.parse_args() | ||
|
||
current_node=MCTSNode(TESTState()) | ||
for l in range(args.levels): | ||
current_node=MCTS.UCTSearch(args.num_sims/(l+1),current_node) | ||
print("level %d"%l) | ||
print("Num Children: %d"%len(current_node.children)) | ||
for i,c in enumerate(current_node.children): | ||
print(i,c) | ||
print("Best Child: %s"%current_node.state) | ||
# while current_node is not None: | ||
# print("Best Child: %s"%current_node.state) | ||
# current_node = MCTS.best_child(current_node, 0) | ||
print("--------------------------------") | ||
# Command: python src/fastmindapi/algo/tree/mcts.py --num_sims 10000 --levels 8 |
This file was deleted.
Oops, something went wrong.