Skip to content

fantasybz/kktix-timeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KKTIX Timeline Visualization

A Python tool that processes KKTIX event data to analyze event history, expenses, and learning hours.

Dashboard Preview

KKTIX Timeline Dashboard

Overview

This project provides data processing for KKTIX event data, featuring:

  • Event data extraction
  • Expense calculations
  • Learning hours tracking
  • Data visualization

Setup

Prerequisites

  • Python 3.8 or higher
  • pip (Python package installer)

Installation Steps

  1. Clone the repository
git clone https://github.com/fantasybz/kktix-timeline.git
  1. Navigate to the project directory
cd kktix-timeline
  1. Install required packages
pip install -r requirements.txt

Environment Configuration

  1. Create and Configure Environment File

    # Create .env file in project root
    touch .env

    Add the following to your .env file:

    KKTIX_EMAIL=your_email@example.com
    KKTIX_PASSWORD=your_password
    KKTIX_HEADLESS=true
    KKTIX_DEBUG=false

    Environment variables explained:

    • KKTIX_EMAIL: Your KKTIX account email
    • KKTIX_PASSWORD: Your KKTIX account password
    • KKTIX_HEADLESS: Run browser in headless mode (no GUI)
    • KKTIX_DEBUG: Enable/disable debug logging

Running the Script

  1. Execute the Python Script
    python3 src/main.py
    The script will process your KKTIX data and generate output files

Troubleshooting

  1. Environment Issues

    # Verify environment variables are loaded
    python3 -c "import os; print(os.getenv('KKTIX_EMAIL'))"
  2. Authentication Issues

    • Verify your KKTIX credentials are correct
    • Check if KKTIX service is accessible
    • Ensure no special characters in .env file are causing issues
  3. Browser Automation Issues

    # Try disabling headless mode
    # Set in .env:
    KKTIX_HEADLESS=false
    KKTIX_DEBUG=true

Features

1. Data Processing

  • Event data extraction
  • Date and time parsing
  • Price calculation
  • Learning hours computation

2. Data Analysis

  • Total expenses calculation
  • Learning hours tracking
  • Event count
  • Location statistics

3. Data Visualization

  • Interactive timeline of attended events
  • Top 5 expense hosts by attended events
  • Top 5 locations by attended events

Technical Details

Technologies Used

  • Python 3.8+
  • Selenium for web scraping
  • D3.js for data visualization

About

KKTIX Order Timeline Visualization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published