A Python tool that processes KKTIX event data to analyze event history, expenses, and learning hours.
This project provides data processing for KKTIX event data, featuring:
- Event data extraction
- Expense calculations
- Learning hours tracking
- Data visualization
- Python 3.8 or higher
- pip (Python package installer)
- Clone the repository
git clone https://github.com/fantasybz/kktix-timeline.git
- Navigate to the project directory
cd kktix-timeline
- Install required packages
pip install -r requirements.txt
-
Create and Configure Environment File
# Create .env file in project root touch .env
Add the following to your
.env
file:KKTIX_EMAIL=your_email@example.com KKTIX_PASSWORD=your_password KKTIX_HEADLESS=true KKTIX_DEBUG=false
Environment variables explained:
KKTIX_EMAIL
: Your KKTIX account emailKKTIX_PASSWORD
: Your KKTIX account passwordKKTIX_HEADLESS
: Run browser in headless mode (no GUI)KKTIX_DEBUG
: Enable/disable debug logging
- Execute the Python Script
The script will process your KKTIX data and generate output files
python3 src/main.py
-
Environment Issues
# Verify environment variables are loaded python3 -c "import os; print(os.getenv('KKTIX_EMAIL'))"
-
Authentication Issues
- Verify your KKTIX credentials are correct
- Check if KKTIX service is accessible
- Ensure no special characters in .env file are causing issues
-
Browser Automation Issues
# Try disabling headless mode # Set in .env: KKTIX_HEADLESS=false KKTIX_DEBUG=true
- Event data extraction
- Date and time parsing
- Price calculation
- Learning hours computation
- Total expenses calculation
- Learning hours tracking
- Event count
- Location statistics
- Interactive timeline of attended events
- Top 5 expense hosts by attended events
- Top 5 locations by attended events
- Python 3.8+
- Selenium for web scraping
- D3.js for data visualization