Skip to content

feixue94/vrs-nerf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field

The implementation of VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field which provides a a new baseline of applying NeRFs to visual relocalization task. We use zip-nerf as implicit learning map (ILM) and 3D reconstruction as explicit geometric map (EGM) for efficient localization. In the localization process, we use SFD2 as local features, IMP as matcher, and online rendering of patches for matching. Results on 7Scenes and CambridgeLandmarks are promising and much better than previous LENS and NeRF-loc. However, the pose accuracy on Aachen dataset is not satisfying because of the poor quality of rendered images.

Results

Rendered video

Video

Groundtruth and rendered images

Rendered image

Matching between query and rendered images

Matching

7Scenes dataset (patch size=15, median position (cm), rotation (deg) errors and average percentage of poses within error of 5cm, 5deg)

chess fire heads office pumpkin kitchen stairs Average (%)
LENS 3, 1.3 10, 3.7 7, 5.8 7, 1.9 8, 2.2 9, 2.2 14, 3.6 -
NeRF-loc 2, 1.1 2, 1.1 1, 1.9 2, 1.1 3, 1.3 3, 1.5 3, 1.3 89.5
ACE 2, 1.1 2, 1.8 2, 1.1 3, 1.4 3, 1.3 3, 1.3 3, 1.2 97.1
SP+SG 0, 0.1 1, 0.2 0, 0.2 1, 0.2 1, 0.1 0, 0.1 2, 0.6 95.7
SFD2+IMP 0, 0.1 1, 0.2 0, 0.2 1, 0.2 1, 0.2 0, 0 2, 0.5 95.7
VRS-NeRF 0, 0.1 1, 0.2 0, 0.2 1, 0.2 1, 0.2 0, 0.1 3, 0.8 93.1

CambridgeLandmarks (patch size=15, median position (cm), rotation (deg) errors and average percentage of poses within error of 25cm, 2deg)

Kings College Great Court Old Hospital Shop Facade St Mary Church Average (%)
LENS 33, 0.5 - 44, 0.9 27, 1.6 53, 1.6 -
NeRF-loc 7, 0.2 25, 0.1 18, 0.4 11, 0.2 4, 0.2 -
ACE 18, 0.4 42, 0.2 31, 0.6 5, 0.3 19, 0.6 54.68
SP+SG 7, 0.1 12, 0.1 9, 0.2 2, 0.1 4, 0.1 89.4
SFD2+IMP 7, 0.1 11, 0.1 10, 0.2 2, 0.1 4, 0.1 89.1
VRS-NeRF 9, 0.1 - 11, 0.2 2, 0.1 5, 0.2 89.3

Aachen dataset (percentage of poses within error of 0.25m, 2deg / 0.5m, 5deg / 5m, 10deg)

Day Night
ESAC 42.6 / 59.6 / 75.5 3.1 / 9.2 / 11.2
HSCNet 71.1 / 81.9 / 91.7 32.7 / 43.9 / 65.3
SP+SPG 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0
SFD2+IMP 89.7 / 96.5 / 98.9 84.7 / 94.9 / 100.0
VRS-NeRF (15) 60.8 / 67.8 / 73.1 19.4 / 22.4 / 25.5
VRS-NeRF (31) 70.1 / 76.9 / 80.9 44.9 / 51.0 / 62.2

Imperfect rendering

Rendered image

Code and pretrained models will come soon

Citation

 @article{xue2024vrs,
          author    = {Fei Xue and Ignas Budvytis and Daniel Olmeda Reino and Roberto Cipolla},
          title     = {VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field},
          booktitle = {ECCVW},
          year = {2024}
 }

@inproceedings{sfd22023,
        title={{SFD2: Semantic-guided Feature Detection and Description}},
        author={Xue, Fei and Budvytis, Ignas and Cipolla, Roberto},
        booktitle={CVPR},
        year={2023}
}

@inproceedings{imp2023,
        title={IMP: Iterative Matching and Pose Estimation with Adaptive Pooling},
        author={Xue, Fei and Budvytis, Ignas and Cipolla, Roberto},
        booktitle={CVPR},
        year={2023}
}

@inproceedings{barron2023zipnerf,
      title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields}, 
      author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
       booktitle={ICCV},
       year={2023}
}

Releases

No releases published

Packages

No packages published