- for Ubuntu platform please first install python3-tk
sudo apt-get install python3-tk
- for Ubuntu or Mac platform type:
$ git clone https://github.com/gnodisnait/nball4tree.git
$ cd nball4tree
$ virtualenv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
- For Hindi data generation follow instructions in the hindinballs directory.
- Please also go through this Informative Report on how Hindi Data is structure and how to process it to use it for this experiment.
- Files used for Hindi data generation are taken from this github repo which mainly took data from IIT Bombay University.
- You need to download w2v from this website and make sure you remove first line of this file as it contains information about number of words and dimensions.
% you need to create an empty file nball.txt for output
$ python nball.py --train_nball /Users/<user-name>/data/nball.txt --w2v /Users/<user-name>/data/cc.hi.300.vec --ws_child /Users/<user-name>/data/wordSenseChildren.txt --ws_catcode /Users/<user-name>/data/glove/catCodes.txt --log log.txt
% --train_nball: output file of nball embeddings
% --w2v: file of pre-trained word embeddings
% --ws_child: file of parent-children relations among word-senses
% --ws_catcode: file of the parent location code of a word-sense in the tree structure
% --log: log file, shall be located in the same directory as the file of nball embeddings
The training process can take around 3 days.
- main input is the output directory of nballs created in Experiment 1.1
- shell command for running the nball construction and training process
$ python nball.py --zero_energy <output-path> --ball <output-file> --ws_child /Users/<user-name>/data/wordSenseChildren.txt
% --zero_energy <output-path> : output path of the nballs of Experiment 1.1, e.g. ```/Users/<user-name>/data/data_out```
% --ball <output-file> : the name of the output nball-embedding file
% --ws_child /Users/<user-name>/data/wordSenseChildren.txt: file of parent-children relations among word-senses
The checking process can take a very long time around 3-4 hours.
- result
If zero-energy is achieved, a big nball-embedding file will be created <output-path>/<output-file>
otherwise, failed relations and word-senses will be printed.
** Test result at Ubuntu platform:
$ python nball.py --neighbors दिल्ली.n.01 फिलीपीन्स.n.01 मंगलवार.n.01 --ball /Users/<user-name>/data/nball.txt --num 6
% --neighbors: list of word-senses
% --ball: file location of the nball embeddings
% --num: number of neighbors
- Results of nearest neighbors look like below:
{ 'दिल्ली.n.01':
[ 'पटना.n.01',
'देहली.n.01',
'कोलकाता.n.01',
'बंगलूर.n.01',
'त्रिवेंद्रम.n.01',
'बंगलुरु.n.01'],
'फिलीपीन्स.n.01':
[ 'फिलीपींस.n.01',
'फिलिपीन्स.n.01',
'फिलिपींस.n.01',
'बोसनिया.n.01',
'बोट्सवाना.n.01',
'मलयेशिया.n.01'],
'मंगलवार.n.01':
[ 'बुधवार.n.01',
'सोमवार.n.01',
'शुक्रवार.n.01',
'शनिवार.n.01',
'गुरुवार.n.01',
'रविवार.n.01']}
English Translation:
{ ‘Delhi.n.01’:
[ ‘Patna.n.01’,
‘Delhi.n.01’, <----- Different written form of Delhi in Hindi
‘Kolkata.n.01’
‘Bangalur.n.01’,
‘Trivandrum.n.01’,
‘Bangaluru.n.01’],
‘Philippines.n.01’:
[ ‘Philippines.n.01’, <----- Different written form of Philippines in Hindi
‘Philippines.n.01’, <----- Different written form of Philippines in Hindi
‘Philippines.n.01’, <----- Different written form of Philippines in Hindi
‘Bosnia.n.01’,
‘Botswana.n.01’,
‘Malaysia.n.01’],
‘Tuesday.n.01’:
[ ‘Wednesday.n.01’,
‘Monday.n.01’,
‘Friday.n.01’,
‘Saturday.n.01’,
‘Thrusday.n.01’,
‘Sunday.n.01’]}
If you use the code, please cite the following paper:
Tiansi Dong, Chrisitan Bauckhage, Hailong Jin, Juanzi Li, Olaf Cremers, Daniel Speicher, Armin B. Cremers, Joerg Zimmermann (2019). Imposing Category Trees Onto Word-Embeddings Using A Geometric Construction. ICLR-19 The Seventh International Conference on Learning Representations, May 6 – 9, New Orleans, Louisiana, USA.