Skip to content

forestwhite/Regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Regression

R markdown (R) and Jupyter (python) notebooks detailing regression functionality grouped by functions. The functionality demonstrated in each language is in the following files:

  1. 1_SLR_SumSqs_R_fkingfisher.* : simple linear regression model example with automatic and manual calculations for sums of squares (total, error, regression/response) and coefficient of determination (R2)
  2. 2_SLR_Significance_Confidence_fkingfisher.* : simple linear regression model example with automatic and manual calculations to test model signficance (t and F test), a slope coefficient hypothesis test (t test), confidence and prediction intervals at a specific predictor variable value, and plots of prediction and interval ranges on a scatter plot.
  3. 3_SLR_Adequecy_Residuals_fkingfisher.* : simple linear regression model example that tests model adequecy by examining the normality and variance of residuals
  4. 4_SLR_Adequecy_PowerTransform_fkingfisher.* : simple linear regression model example that demonstrates how to generate a model with greater adequecy for analysis using the Box-Cox power transformation.
  5. 5_MLR_Determination_Confidence_fkingfisher.* : multiple linear regression model example that demonstrates how to generate interaction terms, test model adequacy, evaluate the contribution of each regressor, calculate coefficient of determination (R2), calculate adjusted CoD (Adjusted R2), and coefficient confidence intervals.

About

R markdown and Jupyter notebooks detailing regression functionality grouped by functions.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published