Weka package for classifier (regression/classification) using the LightGBM gradient boosting framework.
weka.classifiers.functions.LightGBM
-O <REGRESSION|REGRESSION_L1|HUBER|FAIR|POISSON|QUANTILE|MAPE|GAMMA|TWEEDIE|BINARY|MULTICLASS|MULTICLASSOVA|CROSSENTROPY|CROSSENTROPY_LAMBDA|LAMBDA_RANK|RANK_XENDCG>
The type of booster to use:
REGRESSION = Regression
REGRESSION_L1 = Regression L1
HUBER = Huber loss
FAIR = Fair loss
POISSON = Poisson regression
QUANTILE = Quantile regression
MAPE = MAPE loss
GAMMA = Gamma regression with log-link
TWEEDIE = Tweedie regression with log-link
BINARY = Binary log loss classification
MULTICLASS = Multi-class (softmax)
MULTICLASSOVA = Multi-class (one-vs-all)
CROSSENTROPY = Cross-entropy
CROSSENTROPY_LAMBDA = Cross-entropy Lambda
LAMBDA_RANK = Lambda rank
RANK_XENDCG = Rank Xendcg
(default: REGRESSION)
-P <parameters>
The parameters for the booster (blank-separated key=value pairs).
See: https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html
(default: none)
-I <iterations>
The number of iterations to train for.
(default: 1000)
-V <0-100>
The size of the validation set to split off from the training set.
(default: 0.0)
-R
Turns on randomization before splitting off the validation set.
(default: off)
Use the following dependency in your pom.xml
:
<dependency>
<groupId>com.github.fracpete</groupId>
<artifactId>lightgbm-weka-package</artifactId>
<version>2023.3.1</version>
<type>jar</type>
<exclusions>
<exclusion>
<groupId>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-dev</artifactId>
</exclusion>
</exclusions>
</dependency>
For more information on how to install the package, see: