Skip to content

frankvegadelgado/alma

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALMA—MWX2SAT Solver

MWX2SAT Problem

Instance: An $n$-variable $2CNF$ formula with monotone clauses (meaning the variables are never negated) using logic operators $\oplus$ (instead of using the operator $\vee$) and a positive integer $k$.

Question: Is there exists a satisfying truth assignment in which at least $k$ of the variables are true?

Note: This problem is NP-complete (If any NP-complete can be solved in polynomial time, then $P = NP$).

Research

This work is based on the following published article: Note for the P versus NP Problem.

Theory

  • A literal in a Boolean formula is an occurrence of a variable or its negation. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals. A Boolean formula is in 2-conjunctive normal form or 2CNF, if each clause has exactly two distinct literals.

  • A truth assignment for a Boolean formula $\phi$ is a set of values for the variables in $\phi$. The problem Monotone Weighted Xor 2-satisfiability problem (MWX2SAT) asks whether a given Boolean formula $\phi$ in 2CNF has a satisfying truth assignment with at least $k$ true variables using logic operators $\oplus$ on monotone clauses.

Example

Instance: The Boolean formula $(x_{1} \oplus x_{2}) \wedge (x_{2} \oplus x_{3})$ where $\oplus$ (XOR) and $\wedge$ (AND) are the logic operations.

Answer: Yes (we can assign the variables $x_{2}$ as true from a truth assignment to the formula).

Input of this project

The input is on DIMACS formula with the extension .cnf.

Let's take as the accept.cnf from our previous example: The Boolean formula $(x_{1} \oplus x_{2}) \wedge (x_{2} \oplus x_{3})$ is

p cnf 3 2
1 2 0
2 3 0
  • The first line p cnf 3 2 means there are 3 variables and 2 clauses.

  • The second line 1 2 0 means the clause $(x_{1} \oplus x_{2})$ (Note that, the number 0 means the end of the clause).

  • The third line 2 3 0 means the clause $(x_{2} \oplus x_{3})$ (Note that, the number 0 means the end of the clause).

Compile and Environment

Downloading and Installing

Install Python 3.10, 3.11, or 3.12.

Download and Install the NetworkX's Library version 3.3 and its dependencies

If you use pip, you can install NetworkX's Library and its dependencies with:

pip install networkx[default]

Build and Execute

To build and run from the command prompt:

git clone https://github.com/frankvegadelgado/alma.git
cd alma

On alma directory run

python solver.py -i accept.cnf

Then, we should enter the value of the positive integer $k$:

Enter the positive integer k:1
You entered 1

Finally, it would obtain in the console output:

YES
[1, 3]
k = 2

which means there exist at least $k = 2$ true variables for a satisfying truth assignment where the true variables would be $x_{1}$ and $x_{3}$ (i.e. $[1, 3]$).

If we take a non-acceptance instance

python solver.py -i reject.cnf

then it would obtain in the console output:

NO

no matter how large or small we pick up the value of $k$ in this case.

Command Options

On alma directory if you run

python solver.py -h

then you will obtain the following output

usage: solver.py [-h] -i INPUTFILE [-v] [-t]

Solve an NP-complete problem from a DIMACS file.

options:
  -h, --help            show this help message and exit
  -i INPUTFILE, --inputFile INPUTFILE
                        Input file path
  -v, --verbose         Enable verbose output
  -t, --timer           Enable timer output

where it is described all the possible options.

Complexity

+ We solve this problem in polynomial time.
+ Consequently, we deduce that P = NP.

Code

  • Python code by Frank Vega.

License

  • MIT.