Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adam optimizer #10

Merged
merged 2 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions examples/xor_classification.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,14 +16,16 @@ int main() {
auto mlp = SequentialBuilder<Type::float32>::begin()
.add(Linear32::create(2, 15))
.add(ReLU32::create())
.add(Dropout32::create(15, 5, 0.2))
.add(Linear32::create(15, 5))
.add(Sigmoid32::create())
.add(Linear32::create(5, 5))
.add(Tanh32::create())
.add(Linear32::create(5, 2))
.add(Softmax32::create())
.build();
// clang-format on

Optimizer32 optimizer = Optimizer<Type::float32>(mlp->parameters(), 0.1);
Adam32 optimizer = Adam<Type::float32>(mlp->parameters(), 0.01);
Loss::Function32 lossFunction = Loss::CrossEntropy<Type::float32>;

// ------ TRAINING THE NETWORK ------- //
Expand Down
4 changes: 3 additions & 1 deletion include/ShkyeraGrad.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,11 @@
#include "nn/Loss.hpp"
#include "nn/Module.hpp"
#include "nn/Neuron.hpp"
#include "nn/Optimizer.hpp"
#include "nn/Sequential.hpp"

#include "nn/optimizers/Adam.hpp"
#include "nn/optimizers/Optimizer.hpp"

#include "nn/activation/Activation.hpp"
#include "nn/activation/Exp.hpp"
#include "nn/activation/ReLU.hpp"
Expand Down
3 changes: 3 additions & 0 deletions include/core/Value.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@
namespace shkyera {

template <typename T> class Optimizer;
template <typename T> class Adam;

template <typename T> class Value;
template <typename T> using ValuePtr = std::shared_ptr<Value<T>>;

Expand All @@ -39,6 +41,7 @@ template <typename T> class Value : public std::enable_shared_from_this<Value<T>

public:
friend class Optimizer<T>;
friend class Adam<T>;

static ValuePtr<T> create(T data);

Expand Down
88 changes: 88 additions & 0 deletions include/nn/optimizers/Adam.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
/**
* Copyright © 2023 Franciszek Szewczyk. None of the rights reserved.
* This code is released under the Beerware License. If you find this code useful or you appreciate the work, you are
* encouraged to buy the author a beer in return.
* Contact the author at szewczyk.franciszek02@gmail.com for inquiries and support.
*/

#pragma once

#include <unordered_map>
#include <vector>

#include "../../core/Type.hpp"
#include "../../core/Value.hpp"
#include "../Module.hpp"
#include "Optimizer.hpp"

namespace shkyera {

template <typename T> class Adam;
using Adam32 = Adam<Type::float32>;
using Adam64 = Adam<Type::float32>;

template <typename T> class Adam : public Optimizer<T> {
private:
T _b1;
T _b2;
T _eps;
size_t _timestep;

std::unordered_map<Value<T> *, T> _firstMoment;
std::unordered_map<Value<T> *, T> _secondMoment;

T getFirstMoment(const ValuePtr<T> &v);
T getSecondMoment(const ValuePtr<T> &v);

public:
Adam(std::vector<ValuePtr<T>> params, T learningRate, T b1 = 0.9, T b2 = 0.999, T eps = 1e-8);

void step() override;
};

template <typename T>
Adam<T>::Adam(std::vector<ValuePtr<T>> params, T learningRate, T b1, T b2, T eps) : Optimizer<T>(params, learningRate) {
_timestep = 0;
_b1 = b1;
_b2 = b2;
_eps = eps;
}

template <typename T> void Adam<T>::step() {
_timestep++;

for (const ValuePtr<T> &param : this->_parameters) {
T gradient = param->getGradient();

T firstMoment = _b1 * getFirstMoment(param) + (1 - _b1) * gradient;
T secondMoment = _b2 * getSecondMoment(param) + (1 - _b2) * gradient * gradient;

_firstMoment.insert({param.get(), firstMoment});
_secondMoment.insert({param.get(), secondMoment});

T firstMomentHat = firstMoment / (1 - pow(_b1, _timestep));
T secondMomentHat = secondMoment / (1 - pow(_b2, _timestep));

param->_data -= (this->_learningRate * firstMomentHat) / (sqrt(secondMomentHat) + _eps);
}
}

template <typename T> T Adam<T>::getFirstMoment(const ValuePtr<T> &v) {
auto moment = _firstMoment.find(v.get());
if (moment == _firstMoment.end()) {
_firstMoment.insert({v.get(), 0});
return 0;
}
return moment->second;
}

template <typename T> T Adam<T>::getSecondMoment(const ValuePtr<T> &v) {
auto moment = _secondMoment.find(v.get());
if (moment == _secondMoment.end()) {
_secondMoment.insert({v.get(), 0});
return 0;
}
return moment->second;
}

} // namespace shkyera
12 changes: 6 additions & 6 deletions include/nn/Optimizer.hpp → include/nn/optimizers/Optimizer.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,25 +9,25 @@

#include <vector>

#include "../core/Type.hpp"
#include "../core/Value.hpp"
#include "Module.hpp"
#include "../../core/Type.hpp"
#include "../../core/Value.hpp"
#include "../Module.hpp"

namespace shkyera {

using Optimizer32 = Optimizer<Type::float32>;
using Optimizer64 = Optimizer<Type::float32>;

template <typename T> class Optimizer {
private:
protected:
std::vector<ValuePtr<T>> _parameters;
T _learningRate;

public:
Optimizer(std::vector<ValuePtr<T>> params, T learningRate);

void reset();
void step();
virtual void reset();
virtual void step();
};

template <typename T>
Expand Down