This is a Federated Learning Framework for security researcher (not practical).
This implementation was developed by forking from Federated-Learning (PyTorch), a vanilla implementation of the paper "Communication-Efficient Learning of Deep Networks from Decentralized Data".
- Open Command Palette
- Select
Dev Containers: Reopen in Container
docker image build -t futabated-learning .
docker container run --gpus all --rm -it -p 5000:5000 -e PYTHONPATH=/workspace/src/ -v ${PWD}:/workspace futabated-learning /bin/bash
The baseline experiment with MNIST on CNN model using GPU (if gpu:0
is available)
python src/federatedlearning/main.py
Example
python src/federatedlearning/main.py \
mlflow.run_name=exp001 \
federatedlearning.num_byzantines=0 federatedlearning.num_clients=10
Example
python src/federatedlearning/main.py \
--multirun 'federatedlearning.num_byzantines=range(8,13)'
mlflow ui