The pySFA
package is now avaiable on PyPI and the latest development version can be installed from the Github repository pySFA
. Please feel free to download and test it. We welcome any bug reports and feedback.
pip install pysfa
pip install -U git+https://github.com/gEAPA/pySFA
- Sheng Dai, PhD, Turku School of Economics, University of Turku, Finland.
- Zhiqiang Liao, Doctoral Researcher, Aalto University School of Business, Finland.
import numpy as np
import pandas as pd
from pysfa import SFA
from pysfa.dataset import load_Tim_Coelli_frontier
# import the data from Tim Coelli Frontier 4.1
df = load_Tim_Coelli_frontier(x_select=['labour', 'capital'],
y_select=['output'])
y = np.log(df.y)
x = np.log(df.x)
# Estimate SFA model
res = SFA.SFA(y, x, fun=SFA.FUN_PROD, method=SFA.TE_teJ)
res.optimize()
# print estimates
print(res.get_beta())
print(res.get_residuals())
# print estimated parameters
print(res.get_lambda())
print(res.get_sigma2())
print(res.get_sigmau2())
print(res.get_sigmav2())
# print statistics
print(res.get_pvalue())
print(res.get_tvalue())
print(res.get_std_err())
# OR print summary
print(res.summary())
# print TE
print(res.get_technical_efficiency())