Our significant extension version of IGEV, named IGEV++, is available at Paper, Code
This repository contains the source code for our paper:
Iterative Geometry Encoding Volume for Stereo Matching
Gangwei Xu, Xianqi Wang, Xiaohuan Ding, Xin Yang
Pretrained models can be downloaded from google drive
We assume the downloaded pretrained weights are located under the pretrained_models directory.
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run
python demo_imgs.py \
--restore_ckpt pretrained_models/sceneflow/sceneflow.pth \
-l=path/to/your/left_imgs \
-r=path/to/your/right_imgs
or you can demo a trained model pairs of images for a video, run:
python demo_video.py \
--restore_ckpt pretrained_models/sceneflow/sceneflow.pth \
-l=path/to/your/left_imgs \
-r=path/to/your/right_imgs
To save the disparity values as .npy files, run any of the demos with the --save_numpy
flag.
Method | KITTI 2012 (3-noc) |
KITTI 2015 (D1-all) |
Memory (G) | Runtime (s) |
---|---|---|---|---|
RAFT-Stereo | 1.30 % | 1.82 % | 1.02 | 0.38 |
IGEV-Stereo | 1.12 % | 1.59 % | 0.66 | 0.18 |
- NVIDIA RTX 3090
- Python 3.8
- Pytorch 1.12
conda create -n IGEV_Stereo python=3.8
conda activate IGEV_Stereo
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
pip install opencv-python
pip install scikit-image
pip install tensorboard
pip install matplotlib
pip install tqdm
pip install timm==0.5.4
To evaluate/train IGEV-Stereo, you will need to download the required datasets.
By default stereo_datasets.py
will search for the datasets in these locations.
├── /data
├── sceneflow
├── frames_finalpass
├── disparity
├── KITTI
├── KITTI_2012
├── training
├── testing
├── vkitti
├── KITTI_2015
├── training
├── testing
├── vkitti
├── Middlebury
├── trainingH
├── trainingH_GT
├── ETH3D
├── two_view_training
├── two_view_training_gt
├── DTU_data
├── dtu_train
├── dtu_test
To evaluate on Scene Flow or Middlebury or ETH3D, run
python evaluate_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset sceneflow
or
python evaluate_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset middlebury_H
or
python evaluate_stereo.py --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --dataset eth3d
To train on Scene Flow, run
python train_stereo.py --logdir ./checkpoints/sceneflow
To train on KITTI, run
python train_stereo.py --logdir ./checkpoints/kitti --restore_ckpt ./pretrained_models/sceneflow/sceneflow.pth --train_datasets kitti
For submission to the KITTI benchmark, run
python save_disp.py
To train on DTU, run
python train_mvs.py
To evaluate on DTU, run
python evaluate_mvs.py
If you find our work useful in your research, please consider citing our paper:
@inproceedings{xu2023iterative,
title={Iterative Geometry Encoding Volume for Stereo Matching},
author={Xu, Gangwei and Wang, Xianqi and Ding, Xiaohuan and Yang, Xin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={21919--21928},
year={2023}
}
@article{xu2024igev++,
title={IGEV++: Iterative Multi-range Geometry Encoding Volumes for Stereo Matching},
author={Xu, Gangwei and Wang, Xianqi and Zhang, Zhaoxing and Cheng, Junda and Liao, Chunyuan and Yang, Xin},
journal={arXiv preprint arXiv:2409.00638},
year={2024}
}
This project is based on RAFT-Stereo, and CoEx. We thank the original authors for their excellent works.