Skip to content

Commit

Permalink
Add a step param to timelapse functions
Browse files Browse the repository at this point in the history
  • Loading branch information
giswqs committed Nov 26, 2023
1 parent 5e14f92 commit 0d8e79f
Show file tree
Hide file tree
Showing 2 changed files with 64 additions and 23 deletions.
5 changes: 4 additions & 1 deletion geemap/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -5189,14 +5189,15 @@ def handle_folder_click(event):
########################################


def date_sequence(start, end, unit, date_format="YYYY-MM-dd"):
def date_sequence(start, end, unit, date_format="YYYY-MM-dd", step=1):
"""Creates a date sequence.

Args:
start (str): The start date, e.g., '2000-01-01'.
end (str): The end date, e.g., '2000-12-31'.
unit (str): One of 'year', 'quarter', 'month' 'week', 'day', 'hour', 'minute', or 'second'.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
step (int, optional): The step size. Defaults to 1.

Returns:
ee.List: A list of date sequence.
Expand Down Expand Up @@ -5225,6 +5226,8 @@ def get_monday(d):
if unit != "quarter":
count = ee.Number(end_date.difference(start_date, unit)).toInt()
num_seq = ee.List.sequence(0, count)
if step > 1:
num_seq = num_seq.slice(0, num_seq.size(), step)
date_seq = num_seq.map(
lambda d: start_date.advance(d, unit).format(date_format)
)
Expand Down
82 changes: 60 additions & 22 deletions geemap/timelapse.py
Original file line number Diff line number Diff line change
Expand Up @@ -730,7 +730,8 @@ def create_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
parallel_scale=1,
step=1,
):
"""Creates a timeseries from a collection of images by a specified frequency and reducer.
Expand All @@ -745,6 +746,7 @@ def create_timeseries(
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
ee.ImageCollection: The timeseries.
Expand Down Expand Up @@ -776,7 +778,7 @@ def create_timeseries(
if date_format is None:
date_format = feq_dict[frequency]

dates = date_sequence(start_date, end_date, frequency, date_format)
dates = date_sequence(start_date, end_date, frequency, date_format, step)

try:
reducer = eval(f"ee.Reducer.{reducer}()")
Expand All @@ -797,11 +799,13 @@ def create_image(date):

else:
sub_col = collection.filterDate(start, end).filterBounds(region)
image = ee.Image(ee.Algorithms.If(
ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
sub_col.reduce(reducer, parallel_scale).clip(region)
))
image = ee.Image(
ee.Algorithms.If(
ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
sub_col.reduce(reducer, parallel_scale).clip(region),
)
)
return image.set(
{
"system:time_start": ee.Date(date).millis(),
Expand Down Expand Up @@ -865,7 +869,8 @@ def create_timelapse(
loop=0,
mp4=False,
fading=False,
parallel_scale=1
parallel_scale=1,
step=1,
):
"""Create a timelapse from any ee.ImageCollection.
Expand Down Expand Up @@ -916,6 +921,7 @@ def create_timelapse(
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
str: File path to the timelapse gif.
Expand All @@ -940,7 +946,8 @@ def create_timelapse(
reducer=reducer,
drop_empty=True,
date_format=date_format,
parallel_scale=parallel_scale
parallel_scale=parallel_scale,
step=step,
)

# rename the bands to remove the '_reducer' characters from the band names.
Expand Down Expand Up @@ -1151,14 +1158,15 @@ def create_timelapse(
return out_gif


def naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False):
def naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1):
"""Creates NAIP annual timeseries
Args:
roi (object, optional): An ee.Geometry representing the region of interest. Defaults to None.
start_year (int, optional): Starting year for the timeseries. Defaults to 2003.
end_year (int, optional): Ending year for the timeseries. Defaults to None, which will use the current year.
RGBN (bool, optional): Whether to retrieve 4-band NAIP imagery only.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: An ee.ImageCollection representing annual NAIP imagery.
"""
Expand Down Expand Up @@ -1195,7 +1203,7 @@ def get_annual_NAIP(year):
except Exception as e:
raise Exception(e)

years = ee.List.sequence(start_year, end_year)
years = ee.List.sequence(start_year, end_year, step)
collection = ee.ImageCollection(years.map(get_annual_NAIP))
return collection.filterMetadata("empty", "equals", 0)

Expand Down Expand Up @@ -1232,6 +1240,7 @@ def naip_timelapse(
loop=0,
mp4=False,
fading=False,
step=1,
):
"""Create a timelapse from NAIP imagery.
Expand Down Expand Up @@ -1264,7 +1273,7 @@ def naip_timelapse(
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
str: File path to the timelapse gif.
Expand Down Expand Up @@ -1319,6 +1328,7 @@ def naip_timelapse(
loop=loop,
mp4=mp4,
fading=fading,
step=step,
)

except Exception as e:
Expand Down Expand Up @@ -1501,7 +1511,8 @@ def sentinel2_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
parallel_scale=1,
step=1,
):
"""Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Images include both level 1C and level 2A imagery.
Expand All @@ -1520,6 +1531,7 @@ def sentinel2_timeseries(
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): Format of the date. Defaults to None.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: Returns an ImageCollection containing annual Sentinel 2 images.
Expand Down Expand Up @@ -1584,7 +1596,17 @@ def maskS2clouds(image):
collection = collection.select(bands)

ts = create_timeseries(
collection, start, end, roi, bands, frequency, reducer, drop_empty, date_format, parallel_scale
collection,
start,
end,
roi,
bands,
frequency,
reducer,
drop_empty,
date_format,
parallel_scale,
step,
)
return ts

Expand Down Expand Up @@ -1931,6 +1953,7 @@ def landsat_timeseries(
apply_fmask=True,
frequency="year",
date_format=None,
step=1,
):
"""Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Expand All @@ -1943,6 +1966,7 @@ def landsat_timeseries(
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Format of the date. Defaults to None.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: Returns an ImageCollection containing annual Landsat images.
"""
Expand Down Expand Up @@ -2190,16 +2214,24 @@ def getQuarterlyComp(startDate):
# Make list of /quarterly/monthly image composites.

if frequency == "year":
years = ee.List.sequence(start_year, end_year)
years = ee.List.sequence(start_year, end_year, step)
imgList = years.map(getAnnualComp)
elif frequency == "quarter":
quarters = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
str(start_year) + "-01-01",
str(end_year) + "-12-31",
"quarter",
date_format,
step,
)
imgList = quarters.map(getQuarterlyComp)
elif frequency == "month":
months = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
str(start_year) + "-01-01",
str(end_year) + "-12-31",
"month",
date_format,
step,
)
imgList = months.map(getMonthlyComp)

Expand Down Expand Up @@ -2640,6 +2672,7 @@ def landsat_timelapse(
loop=0,
mp4=False,
fading=False,
step=1,
):
"""Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Expand Down Expand Up @@ -2679,6 +2712,7 @@ def landsat_timelapse(
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): Step size for the timelapse. Defaults to 1.
Returns:
str: File path to the output GIF image.
Expand Down Expand Up @@ -2756,6 +2790,7 @@ def landsat_timelapse(
apply_fmask,
frequency,
date_format,
step,
)

col = raw_col.select(bands).map(
Expand Down Expand Up @@ -3385,6 +3420,7 @@ def sentinel2_timelapse(
loop=0,
mp4=False,
fading=False,
step=1,
**kwargs,
):
"""Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Expand Down Expand Up @@ -3423,6 +3459,7 @@ def sentinel2_timelapse(
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): Step size for selecting images. Defaults to 1.
kwargs (optional): Additional arguments to pass the geemap.create_timeseries() function.
Returns:
Expand Down Expand Up @@ -3523,6 +3560,7 @@ def sentinel2_timelapse(
apply_fmask,
cloud_pct,
frequency,
step=step,
**kwargs,
)
col = col.select(bands).map(
Expand Down Expand Up @@ -4484,7 +4522,7 @@ def modis_ocean_color_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
parallel_scale=1,
):
"""Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI
Expand Down Expand Up @@ -4533,7 +4571,7 @@ def modis_ocean_color_timeseries(
reducer,
drop_empty,
date_format,
parallel_scale
parallel_scale,
)

return ts
Expand Down Expand Up @@ -4710,7 +4748,7 @@ def dynamic_world_timeseries(
drop_empty=True,
date_format=None,
return_type="hillshade",
parallel_scale=1
parallel_scale=1,
):
"""Create Dynamic World timeseries.
Expand Down Expand Up @@ -4789,7 +4827,7 @@ def dynamic_world_timeseries(
reducer,
drop_empty,
date_format,
parallel_scale
parallel_scale,
)

if return_type == "class":
Expand Down Expand Up @@ -4824,7 +4862,7 @@ def dynamic_world_timeseries(
"mean",
drop_empty,
date_format,
parallel_scale
parallel_scale,
)

prob_images = ee.ImageCollection(
Expand Down

0 comments on commit 0d8e79f

Please sign in to comment.