Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize create_timeseries for memory #1781

Merged
merged 2 commits into from
Oct 16, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 24 additions & 4 deletions geemap/timelapse.py
Original file line number Diff line number Diff line change
Expand Up @@ -730,6 +730,7 @@ def create_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
):
"""Creates a timeseries from a collection of images by a specified frequency and reducer.

Expand All @@ -743,6 +744,7 @@ def create_timeseries(
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

Returns:
ee.ImageCollection: The timeseries.
Expand Down Expand Up @@ -791,16 +793,20 @@ def create_image(date):

if region is None:
sub_col = collection.filterDate(start, end)
image = sub_col.reduce(reducer)
image = sub_col.reduce(reducer, parallel_scale)

else:
sub_col = collection.filterDate(start, end).filterBounds(region)
image = sub_col.reduce(reducer).clip(region)
image = ee.Image(ee.Algorithms.If(
ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
sub_col.reduce(reducer, parallel_scale).clip(region)
))
return image.set(
{
"system:time_start": ee.Date(date).millis(),
"system:date": ee.Date(date).format(date_format),
"empty": sub_col.size().eq(0),
"empty": sub_col.limit(1).size().eq(0),
}
).rename(bands)

Expand Down Expand Up @@ -859,6 +865,7 @@ def create_timelapse(
loop=0,
mp4=False,
fading=False,
parallel_scale=1
):
"""Create a timelapse from any ee.ImageCollection.

Expand Down Expand Up @@ -908,6 +915,7 @@ def create_timelapse(
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

Returns:
str: File path to the timelapse gif.
Expand All @@ -932,6 +940,7 @@ def create_timelapse(
reducer=reducer,
drop_empty=True,
date_format=date_format,
parallel_scale=parallel_scale
)

# rename the bands to remove the '_reducer' characters from the band names.
Expand Down Expand Up @@ -1492,6 +1501,7 @@ def sentinel2_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
):
"""Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Images include both level 1C and level 2A imagery.
Expand All @@ -1509,6 +1519,7 @@ def sentinel2_timeseries(
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): Format of the date. Defaults to None.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

Returns:
object: Returns an ImageCollection containing annual Sentinel 2 images.
Expand Down Expand Up @@ -1573,7 +1584,7 @@ def maskS2clouds(image):
collection = collection.select(bands)

ts = create_timeseries(
collection, start, end, roi, bands, frequency, reducer, drop_empty, date_format
collection, start, end, roi, bands, frequency, reducer, drop_empty, date_format, parallel_scale
)
return ts

Expand Down Expand Up @@ -3499,6 +3510,8 @@ def sentinel2_timelapse(
kwargs["reducer"] = "median"
if "drop_empty" not in kwargs:
kwargs["drop_empty"] = True
if "parallel_scale" not in kwargs:
kwargs["parallel_scale"] = 1
kwargs["date_format"] = date_format
col = sentinel2_timeseries(
roi,
Expand Down Expand Up @@ -4471,6 +4484,7 @@ def modis_ocean_color_timeseries(
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1
):
"""Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

Expand All @@ -4484,6 +4498,7 @@ def modis_ocean_color_timeseries(
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

Returns:
ee.ImageCollection: The timeseries.
Expand Down Expand Up @@ -4518,6 +4533,7 @@ def modis_ocean_color_timeseries(
reducer,
drop_empty,
date_format,
parallel_scale
)

return ts
Expand Down Expand Up @@ -4694,6 +4710,7 @@ def dynamic_world_timeseries(
drop_empty=True,
date_format=None,
return_type="hillshade",
parallel_scale=1
):
"""Create Dynamic World timeseries.

Expand All @@ -4707,6 +4724,7 @@ def dynamic_world_timeseries(
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

Returns:
ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries.
Expand Down Expand Up @@ -4771,6 +4789,7 @@ def dynamic_world_timeseries(
reducer,
drop_empty,
date_format,
parallel_scale
)

if return_type == "class":
Expand Down Expand Up @@ -4805,6 +4824,7 @@ def dynamic_world_timeseries(
"mean",
drop_empty,
date_format,
parallel_scale
)

prob_images = ee.ImageCollection(
Expand Down