This repository is the official implementation of
- DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations (presented at ICLR 2022).
- LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation (presented at NeurIPS 2022).
- Download MuJoCo version 2.1
- Extract the downloaded
mujoco210
directory into~/.mujoco/mujoco210
- Insert the following commands in
~/.bashrc
.export LD_LIBRARY_PATH="$HOME/.mujoco/mujoco210/bin:$LD_LIBRARY_PATH"
- Create conda environment and activate it:
conda env create -f environment.yml conda activate imitation-dice
- (Optional) Install 'd4rl':
pip install git+https://github.com/rail-berkeley/d4rl@master#egg=d4rl
- (Optional) Issues with mujoco-py
- Please see Troubleshooting in mujoco-py
- DemoDICE
python lfd_mujoco.py \ --env_id=Hopper-v2 \ --imperfect_dataset_names=expert-v2 \ --imperfect_dataset_names=random-v2 \ --imperfect_num_trajs=100 \ --imperfect_num_trajs=500 \ --algorithm=demodice
- LobsDICE
python lfo_mujoco.py \ --env_id=Hopper-v2 \ --imperfect_dataset_names=expert-v2 \ --imperfect_dataset_names=medium-v2 \ --imperfect_dataset_names=random-v2 \ --imperfect_num_trajs=100 \ --imperfect_num_trajs=500 \ --imperfect_num_trajs=500 \ --algorithm=lobsdice
DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations
@inproceedings{kim2022demodice,
title = {DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations},
author = {Geon-Hyeong Kim and Seokin Seo and Jongmin Lee and Wonseok Jeon and HyeongJoo Hwang and Hongseok Yang and Kee-Eung Kim},
booktitle = {International Conference on Learning Representations},
year = {2022}
}
LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation
@article{kim2022lobsdice,
title = {LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation},
author = {Geon-Hyeong Kim and Jongmin Lee and Youngsoo Jang and Hongseok Yang and Kee-Eung Kim},
journal = {Advances in Neural Information Processing Systems},
year = {2022}
}