Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions ggml/src/ggml-cuda/diag.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
#include "convert.cuh"
#include "diag.cuh"
#include "ggml.h"

template <typename T>
static __global__ void diag_kernel(T * __restrict__ dst,
const T * __restrict__ src,
const int64_t ne0,
const int64_t ne1,
const int64_t ne2,
const int64_t ne3,
const int64_t total_elements) {
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;

if (global_idx >= total_elements) {
return;
}

const int64_t i0 = global_idx % ne0;
const int64_t i1 = (global_idx / ne0) % ne1;
const int64_t i2 = (global_idx / (ne0 * ne1)) % ne2;
const int64_t i3 = global_idx / (ne0 * ne1 * ne2);

const int64_t dst_idx = ((i3 * ne2 + i2) * ne1 + i1) * ne0 + i0;

if (i0 == i1) {
const int64_t batch_idx = i3 * ne2 + i2;
const int64_t src_idx = batch_idx * ne0 + i0;
dst[dst_idx] = src[src_idx];
} else {
dst[dst_idx] = ggml_cuda_cast<T>(0);
}
GGML_UNUSED_VARS(ne3);
}

void ggml_cuda_op_diag(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];

void * dst_d = dst->data;
const void * src0_d = src0->data;

cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0));

const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];

const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t ne3 = dst->ne[3];

GGML_ASSERT(ne00 == ne0);
GGML_ASSERT(ne01 == 1);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne3);

const int64_t n_elems = ggml_nelements(dst);
const int64_t num_blocks = (n_elems + CUDA_DIAG_BLOCK_SIZE - 1) / CUDA_DIAG_BLOCK_SIZE;

switch (dst->type) {
case GGML_TYPE_F32:
diag_kernel<<<num_blocks, CUDA_DIAG_BLOCK_SIZE, 0, stream>>>((float *) dst_d, (const float *) src0_d, ne0,
ne1, ne2, ne3, n_elems);
break;
case GGML_TYPE_F16:
diag_kernel<<<num_blocks, CUDA_DIAG_BLOCK_SIZE, 0, stream>>>((half *) dst_d, (const half *) src0_d, ne0,
ne1, ne2, ne3, n_elems);
break;
default:
GGML_ABORT("unsupported type");
}
}
5 changes: 5 additions & 0 deletions ggml/src/ggml-cuda/diag.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#include "common.cuh"

#define CUDA_DIAG_BLOCK_SIZE 256

void ggml_cuda_op_diag(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
5 changes: 5 additions & 0 deletions ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/diag.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
Expand Down Expand Up @@ -2641,6 +2642,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
case GGML_OP_DIAG:
ggml_cuda_op_diag(ctx, dst);
break;
case GGML_OP_DIAG_MASK_INF:
ggml_cuda_op_diag_mask_inf(ctx, dst);
break;
Expand Down Expand Up @@ -4624,6 +4628,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_FILL:
case GGML_OP_CUMSUM:
case GGML_OP_TRI:
case GGML_OP_DIAG:
return true;
case GGML_OP_SOLVE_TRI:
return op->src[0]->ne[0] <= 64 && op->src[1]->ne[0] <= 32;
Expand Down
29 changes: 29 additions & 0 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6253,6 +6253,31 @@ struct test_solve_tri : public test_case {
}
};

// GGML_OP_DIAG
struct test_diag : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;

std::string vars() override { return VARS_TO_STR2(type, ne); }

test_diag(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = { 10, 1, 4, 3 })
: type(type), ne(ne) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
GGML_ASSERT(ne[1] == 1);
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
ggml_set_param(a);
ggml_set_name(a, "a");

ggml_tensor * out = ggml_diag(ctx, a);
ggml_set_name(out, "out");

return out;
}
};


enum llm_norm_type {
LLM_NORM,
LLM_NORM_RMS,
Expand Down Expand Up @@ -7826,6 +7851,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));

test_cases.emplace_back(new test_diag());
test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 79, 1, 19, 13 }));
test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 256, 1, 8, 16 }));

test_cases.emplace_back(new test_solve_tri());
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
Expand Down
Loading