- Machine Learning Basic
- Neural Network & Training Techniques
- Convlutional Neural Network & Recurrent Neural Network
- Detection & Segmentation ( Yolo2 )
- Reinforcement Learning ( DQN & gym )
- Reinforcement Learning ( A3C )
- Generative Model ( Auto-encoder & GAN & DCGAN )
- Jetson TX2 setup & Test TensorRT
- Paper Review
docker run --name pytorch --rm \
-v "/tmp/.X11-unix:/tmp/.X11-unix:rw" \
-v "$HOME/.Xauthority:/root/.Xauthority:rw" \
-e QT_X11_NO_MITSHM=1 \
-e DISPLAY=$DISPLAY \
-p 8888:8888 \
--net=host \
--mount 'type=bind,src=/home/ghryou/Workspace/deeplearning_tutorial,dst=/app' \
-it ghryou/pytorch:cpu bash
jupyter notebook --allow-root
docker run --name pytorch --rm \
--runtime=nvidia \
-v "/tmp/.X11-unix:/tmp/.X11-unix:rw" \
-v "$HOME/.Xauthority:/root/.Xauthority:rw" \
-e QT_X11_NO_MITSHM=1 \
-e DISPLAY=$DISPLAY \
--net=host \
--mount 'type=bind,src=/home/naverlabs/Workspace/deeplearning_tutorial,dst=/app' \
-it ghryou/pytorch:gpu bash
- setup shared memory at docker settings Right click docker icon -> Settings -> Shared Drives -> Check C Drive -> Apply -> Type password -> Restart docker
2. Install Xming X Server
3. Follow this link to setup Xming X Server
4. Run Xming
5. Open windows 10 powershell & Run this code
docker run --name pytorch --rm `
-p 8888:8888 `
-p 6006:6006 `
-e DISPLAY:<IP_Address>:0 `
--mount type=bind,src=C:\USERS\naverlabs\Desktop\deeplearning_tutorial,dst=/app `
-it ghryou/pytorch:cpu bash
open -a XQuartz
./docker/run.mac.sh ghryou/pytorch:cpu bash
sudo chown <User name> -R <directory path>
docker build -t <tag name> -f <Dockerfile path> <Dockerfile directory>
docker exec -it pytorch bash
docker images
docker ps -al
docker stop <image id>
docker rmi <image id>
docker system prune
- Download JetPack from Nvidia website
- Makes run files executable with sudo chmod +x JetPack-L4T-3.3-linux-x64_b39.run
- Run ./JetPack-L4T-3.3-linux-x64_b39.run
- Follow the Commands of JetPack Installer (Install every package)

- Select Device accesses Internet via Router/Switch

- Connect jetson with host PC and follow the instructions

- Connect display to jetson and setup internet connection on jetson
- Check IP address of jetson with ifconfig
- Run ./JetPack-L4T-3.3-linux-x64_b39.run again
- Disable Flash OS Image to Target

- Select Device accesses Internet via Router/Switch

- Enter jetson's IP address and follow the instructions
- Install pip3
sudo apt-get update && sudo apt-get upgrade
sudo apt-get install python3-pip
pip3 install -U pip3
- clone pyTorch repo
git clone http://github.com/pytorch/pytorch
cd pytorch
git submodule update --init
- install prereqs
sudo pip3 install -U setuptools
sudo pip3 install -r requirements.txt
- Develop Mode:
python3 setup.py build_deps
sudo python3 setup.py develop
- Verify CUDA (from python3 interactive terminal)
import torch
print(torch.__version__)
print(torch.cuda.is_available())
Reference: https://gist.github.com/dusty-nv/ef2b372301c00c0a9d3203e42fd83426