/data/
-> Folder for the datasets, before(.csv, .tar.gz, etc..) and after (.graphml) preprocessing/exp_shuffles/
-> Folder for PDA experiment result binaries/experiment/
-> Folder for main experiment result binaries/figures/
-> Folder for saved figures of plots/test_notebooks/
-> Folder for the notebooks used for testingpreprocessing.ipynb
-> Preprocessing of the datasetsrun_experiment.ipynb
-> Compute counts and significance of motifs in the datasets and save the results as binary files.compare_z_scores.ipynb
-> One on one comparison of motifsread_and_plot.ipynb
-> Batch processing and plottingexample.ipynb
-> Example experiment on Escherichia Coli datasetperformance_degradation_analysis.ipynb
-> Experiment on performance degration ofmotif_significance()
when using speed-up parameters
Hopefully this works:
conda create --name fl-gt --file requirements.txt
conda activate fl-gt
jupyter notebook