FedReDA: Federated Reliability-aware Dual Adapters for Noisy-Label Learning on Vision Foundation Models
This repository contains the reference implementation of FedReDA,
a federated noisy-label learning method built on a frozen DINOv2 backbone with
dual Reins adapters (student/teacher) and noise-aware distillation.
- Frozen DINOv2 ViT-S/14 backbone (
_small_variant) - Two Reins adapters:
reins: per-client student adapter (Adapter1)reins2: global / LOO teacher adapter (Adapter2)
- LOO teacher or shared FedAvg teacher
- GMM + agreement mask 기반 clean/noisy 샘플 구분
- Noisy KD + clean CE + FedProx-style regularization
- ComputeTracker 로 GPU+CPU 시간 및 샘플 수 자동 로깅
.
├── FedReDA.py
├── dino_variant.py
├── other_repos/
│ └── FedNoRo/
├── rein/
│ └── models/backbones/
│ ├── reins_dinov2.py
│ └── reins.py
├── dataset/
│ └── dataset.py
├── utils/
│ └── utils.py
└── checkpoints/
└── dinov2_vits14_pretrain.pth